
vhdl-style-guide Documentation
Release 3.2.0

Jeremiah C Leary

May 13, 2021

Contents:

1 Overview 1
1.1 Why VSG? . 1
1.2 Key Benefits . 1
1.3 Key Features . 2
1.4 Known Limitations . 2

2 Gallery 3
2.1 Entities . 3
2.2 Architectures . 4
2.3 Component Declarations . 4
2.4 Component Instantiations . 5
2.5 Concurrent Assignments . 5

3 Installation 7
3.1 PIP . 7
3.2 Git Hub . 7

4 Usage 9

5 Formatting Terminal Output 13
5.1 VSG . 13
5.2 Synastic . 14
5.3 Summary . 15

6 Styles 17
6.1 Style Descriptions . 17
6.2 Adjusting built in styles . 18

7 Configuring 21
7.1 file_list . 22
7.2 local_rules . 22
7.3 rule . 22
7.4 Reporting Single Rule Configuration . 23
7.5 Reporting Configuration for All Rules . 23
7.6 Rule Configuration Priorities . 23
7.7 Example: Disabling a rule . 24
7.8 Example: Setting the indent increment size for a single rule . 24

i

7.9 Example: Setting the indent increment size for all rules . 24
7.10 Multiple configurations . 25
7.11 Configuring Disabled Rules . 26
7.12 Configuring Uppercase and Lowercase Rules . 28
7.13 Configuring Prefix and Suffix Rules . 32
7.14 Configuring Number of Signals in Signal Declaration . 33
7.15 Configuring Length Rules . 33
7.16 Configuring Keyword Alignment Rules . 34
7.17 Configuring Identifier Alignment Rules . 39
7.18 Configuring Blank Lines . 41
7.19 Configuring Previous Line Rules . 43
7.20 Configuring Type of Instantiations . 46
7.21 Configuring Optional Items . 46
7.22 Configuring Block Comments . 47
7.23 Configuring Indentation . 50
7.24 Configuring Multiline Indent Rules . 52
7.25 Configuring Multiline Structure Rules . 55
7.26 Configuring Concurrent Alignment Rules . 60
7.27 Configuring Concurrent Structure Rules . 63

8 Code Tags 65
8.1 Full rule exclusion . 65
8.2 Individual Rule Exclusions . 65
8.3 Next Line Rule Exclusions . 66

9 Editor Integration 67
9.1 VIM . 67

10 Tool Integration 69
10.1 –all-phases . 69
10.2 –json . 69
10.3 –fix_only . 70

11 Pragmas 71

12 Localizing 73
12.1 Example: Create rule to check for entity and architectures in the same file. 73
12.2 Understanding the Rule class . 76
12.3 Violation dictionary . 79
12.4 Rule creation guidelines . 81

13 Phases 83
13.1 Phase - Structural . 83
13.2 Phase - Whitespace . 83
13.3 Phase - Vertical Spacing . 84
13.4 Phase - Indentation . 84
13.5 Phase - Alignment . 84
13.6 Phase - Capitalization . 84
13.7 Phase - Naming conventions . 84
13.8 Subphases . 84

14 Rule Severity 87
14.1 Configuring Severity Levels . 87
14.2 Defining Severity Levels . 88

ii

15 Rules 89
15.1 After Rules . 89
15.2 Architecture Rules . 91
15.3 Assert Rules . 103
15.4 Attribute Rules . 105
15.5 Attribute Declaration Rules . 106
15.6 Attribute Specification Rules . 107
15.7 Block Rules . 110
15.8 Block Comment Rules . 119
15.9 Case Rules . 121
15.10 Comment Rules . 128
15.11 Component Rules . 129
15.12 Concurrent Rules . 137
15.13 Constant Rules . 141
15.14 Context Rules . 147
15.15 Context Reference Rules . 156
15.16 Entity Rules . 159
15.17 Entity Specification Rules . 167
15.18 Exit Rules . 169
15.19 File Rules . 169
15.20 For Loop Rules . 171
15.21 Function Rules . 172
15.22 Generate Rules . 179
15.23 Generic Rules . 187
15.24 Generic Map Rules . 193
15.25 If Rules . 196
15.26 Instantiation Rules . 207
15.27 Length Rules . 215
15.28 Library Rules . 216
15.29 Loop Statement Rules . 220
15.30 Package Rules . 220
15.31 Package Body Rules . 227
15.32 Port Rules . 234
15.33 Port Map Rules . 244
15.34 Procedure Rules . 247
15.35 Procedure Call Rules . 252
15.36 Process Rules . 255
15.37 Report Statement Rules . 270
15.38 Range Rules . 273
15.39 Sequential Rules . 273
15.40 Signal Rules . 276
15.41 Source File Rules . 282
15.42 Subtype Rules . 282
15.43 Type Rules . 284
15.44 Variable Rules . 290
15.45 Variable Assignment Rules . 294
15.46 Wait Rules . 296
15.47 When Rules . 296
15.48 While Loop Rules . 297
15.49 Whitespace Rules . 298
15.50 With Rules . 301

16 Contributing 303
16.1 Bug Reports . 303

iii

16.2 Code Base Improvements . 303
16.3 Feature Requests . 304
16.4 Pull Requests . 304
16.5 Running Tests . 304

17 Release Notes 307

iv

CHAPTER 1

Overview

VHDL Style Guide (VSG) provides coding style guide enforcement for VHDL code.

1.1 Why VSG?

VSG was created after participating in a code review in which a real issue was masked by a coding style issue. A
finding was created for the style issue, while the real issue was missed. When the code was re-reviewed, the real issue
was discovered. The coding style issue seemed to blind me to the real issue.

Depending on your process, style issues can take a lot of time to resolve.

1. Create finding/ticket/issue

2. Disposition finding/ticket/issue

3. Fix the problem

4. Verify the problem was fixed

Spending less time on style issues leaves more time to analyze code structure. Eliminating style issues reduces the
amount of time performing code reviews. This results in a higher quality code base.

1.2 Key Benefits

• Explicitly define VHDL coding standards

• Make coding standards visible to everyone

• Improve code reviews

• Quickly bring code up to current standards

VSG allows the style of the code to be defined and enforced over portions or the entire code base.

1

vhdl-style-guide Documentation, Release 3.2.0

1.3 Key Features

• Command line tool

– Integrates into continuous integration flow tools

• Reports and fixes issues found

– Horizontal whitespace

– Vertical whitespace

– Upper and lower case

– Keyword alignments

– etc. . .

• Fully configurable rules via JSON/YAML configuration file

– Disable rules

– Alter behavior of existing rules

– Change phase of execution

• Localize rule sets

– Create your own rules using python

– Use existing rules as a template

– Fully integrates into base rule set

1.4 Known Limitations

VSG is a continual work in progress. As such, this version has the following known limitations:

• Parser will not process configurations

• Parser will not process embedded PSL

• Parser will not process VHDL 2019

2 Chapter 1. Overview

CHAPTER 2

Gallery

The examples shown below illustrate the formatting enforced by VSG. They show a subset of the rules:

• capitalization

• indentation

• column alignments

– comments

– :’s

– assignment operators (<= and =>)

• vertical spacing

2.1 Entities

entity GRP_DEBOUNCER is
generic (
N : positive := 8; -- input bus width
CNT_VAL : positive := 10000 -- clock counts for debounce period

);
port (
CLK_I : in std_logic := 'X'; -- system clock
DATA_I : in std_logic_vector(1 downto 0) -- noisy input data
DATA_O : out std_logic_vector(1 downto 0); -- registered stable output data
STRB_O : out std_logic -- strobe for new data available

);
end entity GRP_DEBOUNCER;

3

vhdl-style-guide Documentation, Release 3.2.0

2.2 Architectures

architecture BEHAVIORAL of PIC is

type state_type is (
reset_s, get_commands, jump_int_method, start_polling,
ack_txinfo_rxd, start_priority_check, tx_int_info_priority

);

signal next_s : state_type :=reset_s;
signal int_type : unsigned(1 downto 0):="01";
signal int_index, count_cmd : integer := 0;

type prior_table is array (0 to 7) of unsigned(2 downto 0);

signal pt : prior_table := (others => (others => '0'));
signal int_pt : unsigned(2 downto 0):="000";
signal flag, flag1 : std_logic := '0';

begin

end architecture BEHAVIORAL;

2.3 Component Declarations

component CPU is
port (
CLK_I : in std_logic;
SWITCH : in std_logic_vector(9 downto 0);

SER_IN : in std_logic;
SER_OUT : out std_logic;

TEMP_SPO : in std_logic;
TEMP_SPI : out std_logic;
TEMP_CE : out std_logic;
TEMP_SCLK : out std_logic;

SEG1 : out std_logic_vector(7 downto 0);
SEG2 : out std_logic_vector(7 downto 0);
LED : out std_logic_vector(7 downto 0);

XM_ADR : out std_logic_vector(15 downto 0);
XM_RDAT : in std_logic_vector(7 downto 0);
XM_WDAT : out std_logic_vector(7 downto 0);
XM_WE : out std_logic;
XM_CE : out std_logic

);
end component;

4 Chapter 2. Gallery

vhdl-style-guide Documentation, Release 3.2.0

2.4 Component Instantiations

INTERLEAVER_I0 : INTERLEAVER
generic map (
DELAY => TREL1_LEN + TREL2_LEN + 2 + delay,
WAY => 0

)
port map (
CLK => clk,
RST => rst,
D => tmp0,
Q => tmp1

);

2.5 Concurrent Assignments

nCounter <= x"FFFFFF" when Counter=x"FFFFFF" and Button='1' else
x"000000" when Counter=x"000000" and Button='0' else
Counter + 1 when Button='1' else
Counter - 1;

nextHistory <= '0' when Counter=x"000000" else
'1';

nButtonHistory <= nextHistory & ButtonHistory(1);
Dout <= '1' when ButtonHistory="01" else

'0';

2.4. Component Instantiations 5

vhdl-style-guide Documentation, Release 3.2.0

6 Chapter 2. Gallery

CHAPTER 3

Installation

There are two methods to install VSG.

3.1 PIP

The most recent released version is hosted on PyPI. It can be installed using pip.

pip install vsg

This is the preferred method for installing VSG.

3.2 Git Hub

The latest development version can be cloned from the git hub repo.

git clone https://github.com/jeremiah-c-leary/vhdl-style-guide.git

Then installed using the setup.py file.

python setup.py install

7

vhdl-style-guide Documentation, Release 3.2.0

8 Chapter 3. Installation

CHAPTER 4

Usage

VSG is a both a command line tool and a python package. The command line tool can be invoked with:

$ vsg
usage: VHDL Style Guide (VSG) [-h] [-f FILENAME [FILENAME ...]] [-lr LOCAL_RULES] [-c
→˓CONFIGURATION [CONFIGURATION ...]] [--fix]

[-fp FIX_PHASE] [-j JUNIT] [-js JSON] [-of {vsg,
→˓syntastic,summary}] [-b] [-oc OUTPUT_CONFIGURATION]

[-rc RULE_CONFIGURATION] [--style {indent_only,jcl}] [-
→˓v] [-ap] [--fix_only FIX_ONLY] [-p JOBS]

[--debug]

Analyzes VHDL files for style guide violations. Reference documentation is located
→˓at: http://vhdl-style-guide.readthedocs.io/en/latest/index.html

optional arguments:
-h, --help show this help message and exit
-f FILENAME [FILENAME ...], --filename FILENAME [FILENAME ...]

File to analyze
-lr LOCAL_RULES, --local_rules LOCAL_RULES

Path to local rules
-c CONFIGURATION [CONFIGURATION ...], --configuration CONFIGURATION [CONFIGURATION .

→˓..]
JSON or YAML configuration file(s)

--fix Fix issues found
-fp FIX_PHASE, --fix_phase FIX_PHASE

Fix issues up to and including this phase
-j JUNIT, --junit JUNIT

Extract Junit file
-js JSON, --json JSON

Extract JSON file
-of {vsg,syntastic,summary}, --output_format {vsg,syntastic,summary}

Sets the output format.
-b, --backup Creates a copy of input file for comparison with fixed

→˓version.

(continues on next page)

9

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

-oc OUTPUT_CONFIGURATION, --output_configuration OUTPUT_CONFIGURATION
Write configuration to file name.

-rc RULE_CONFIGURATION, --rule_configuration RULE_CONFIGURATION
Display configuration of a rule

--style {indent_only,jcl}
Use predefined style

-v, --version Displays version information
-ap, --all_phases Do not stop when a violation is detected.
--fix_only FIX_ONLY Restrict fixing via JSON file.
-p JOBS, --jobs JOBS number of parallel jobs to use, default is the number of cpu

→˓cores
--debug Displays verbose debug information

Command Line Options

Option Description
-f FILENAME The VHDL file to be analyzed or fixed. Multiple files

can be passed through this option.
–local_rules LOCAL_RULES Additional rules not in the base set.
–configuration CONFIGURATION JSON or YAML file(s) which alters the behavior of

VSG. Configuration can also include a list files to an-
alyze. Any combination of JSON and YAML files can
be passed. Each will be processed in order from left to
right.

–fix Update issues found. Replaces current file with updated
one.

–fix_phase Applies for all phases up to and including this phase.
Analysis will then be performed on all phases.

–junit Filename of JUnit XML file to generate.
–json Filename of JSON file to generate.
–output_format

Configures the sdout output format. vsg – standard
VSG output syntastic – format compatible with
the syntastic VIM module summary – Minimal
output useful when running on multiple files

–backup Creates a copy of the input file before applying any
fixes. This can be used to compare the fixed file against
the original.

–output_configuration Writes a JSON configuration file of the current run. It
includes a file_list, local_rules (if used), and how every
rule was configured. This configuration can be fed back
into VSG.

–rule_configuration Displays the configuration of a rule.
–style Use a built in coding style.
–version Displays the version of VSG.
–all-phases Executes all phases without stopping if a violation is

found.
–fix_only Restrict which rules are fixed based on JSON file.
–jobs Restrict the number of cores used to run. The default is

the number of cores available.
–debug Print verbose debug information to assist with debuging

errors with VSG.

10 Chapter 4. Usage

vhdl-style-guide Documentation, Release 3.2.0

Here is an example output running against a test file:

$ vsg -f example/architecture-empty.vhd
==
File: example/architecture-empty.vhd
==
Phase 1 of 7... Reporting
Total Rules Checked: 83
Total Violations: 3

Error : 3
Warning : 0

----------------------------+------------+------------+-------------------------------
→˓-------
Rule | severity | line(s) | Solution

----------------------------+------------+------------+-------------------------------
→˓-------
port_021 | Error | 45 | Move the (to the same line

→˓as the "port" keyword.
instantiation_034 | Error | 169 | Change to component

→˓instantiation
generic_map_003 | Error | 170 | Move the (to the same line

→˓as the "generic map" keyword.
----------------------------+------------+--------------------------------------
NOTE: Refer to online documentation at https://vhdl-style-guide.readthedocs.io/en/
→˓latest/index.html for more information.

VSG will report the rule which is violated and the line number or group of lines where the violation occured. It also
gives a suggestion on how to fix the violation. The rules VSG uses are grouped together into Phases. These phases
follow the order in which the user would take to address the violations. Each rule is detailed in the Rules section. The
violation and the appropriate fix for each rule is shown.

The violations can be fixed manually, or use the –fix option to have VSG update the file.

$ vsg -f example/architecture-empty.vhd
==
File: example/architecture-empty.vhd
==
Phase 7 of 7... Reporting
Total Rules Checked: 378
Total Violations: 0

If rule violations can not be fixed, they will be reported after fixing everything else:

$ vsg -f example/architecture-empty.vhd
==
File: example/architecture-empty.vhd
==
Phase 1 of 7... Reporting
Total Rules Checked: 83
Total Violations: 1

Error : 1
Warning : 0

----------------------------+------------+------------+-------------------------------
→˓-------
Rule | severity | line(s) | Solution

----------------------------+------------+------------+-------------------------------
→˓-------
instantiation_034 | Error | 169 | Change to component

→˓instantiation (continues on next page)

11

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

----------------------------+------------+--------------------------------------
NOTE: Refer to online documentation at https://vhdl-style-guide.readthedocs.io/en/
→˓latest/index.html for more information.

12 Chapter 4. Usage

CHAPTER 5

Formatting Terminal Output

VSG supports multiple display output using the -of command line argument.

Option Description
vsg Default output format.
syntastic Output format following the syntastic standard. Useful for integrating with Vim.
summary Output format showing the results at the file level.

5.1 VSG

This is the default output format of VSG. It gives analysis statistics along with individual rule violations. This format
is the most verbose of all output formats.

Here is a sample output:

==
File: design_fixed/BufFifo/BUF_FIFO.vhd
==
Phase 1 of 7... Reporting
Total Rules Checked: 83
Total Violations: 17

Error : 17
Warning : 0

----------------------------+------------+------------+-------------------------------
→˓-------
Rule | severity | line(s) | Solution

----------------------------+------------+------------+-------------------------------
→˓-------
port_021 | Error | 45 | Move the (to the same line

→˓as the "port" keyword.
instantiation_034 | Error | 169 | Change to component

→˓instantiation

(continues on next page)

13

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

generic_map_003 | Error | 170 | Move the (to the same line
→˓as the "generic map" keyword.
port_map_003 | Error | 175 | Move the (to the same line

→˓as the "port map" keyword.
instantiation_034 | Error | 186 | Change to component

→˓instantiation
instantiation_034 | Error | 196 | Change to component

→˓instantiation
generic_map_003 | Error | 197 | Move the (to the same line

→˓as the "generic map" keyword.
port_map_003 | Error | 202 | Move the (to the same line

→˓as the "port map" keyword.
instantiation_034 | Error | 213 | Change to component

→˓instantiation
generic_map_003 | Error | 214 | Move the (to the same line

→˓as the "generic map" keyword.
port_map_003 | Error | 219 | Move the (to the same line

→˓as the "port map" keyword.
process_012 | Error | 231 | Add *is* keyword
if_002 | Error | 313 | Enclose condition in ()'s.
process_012 | Error | 337 | Add *is* keyword
if_002 | Error | 366 | Enclose condition in ()'s.
process_012 | Error | 376 | Add *is* keyword
if_002 | Error | 455 | Enclose condition in ()'s.

----------------------------+------------+------------+-------------------------------
→˓-------
NOTE: Refer to online documentation at https://vhdl-style-guide.readthedocs.io/en/
→˓latest/index.html for more information.

5.2 Synastic

Using the syntastic format allows editors with understand that standard to use the output of VSG.

Below is the output format definition:

<status>: <filename>(<line_number>)<rule> -- <solution>

Where:

Item Description
status ERROR = Violation. WARNING = Non Violation.
filename The file being analyzed.
line_number The line number the violation occured.
rule The rule id that detected the violation
solution A description of how to fix the violation

Here is a sample output using the syntastic option:

ERROR: design_fixed/mdct/DBUFCTL.VHD(38)entity_017 -- Move : -1 columns
ERROR: design_fixed/mdct/DBUFCTL.VHD(59)process_035 -- Move 13 columns
ERROR: design_fixed/mdct/DCT2D.VHD(329)instantiation_033 -- Add *component* keyword

(continues on next page)

14 Chapter 5. Formatting Terminal Output

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

ERROR: design_fixed/mdct/MDCT.VHD(83)instantiation_034 -- Change to component
→˓instantiation
ERROR: design_fixed/mdct/RAM.VHD(36)entity_017 -- Move : -12 columns

5.3 Summary

Using the summary format will display results at the file level. Individual rule violations will not be displayed.

Below is the output format definition:

File: <filename> <status> (<num_rules> rules checked) [<severity>: <num_severity>] ...

Where:

Item Description
filename The file being analyzed.
status OK = No violations detected. ERROR = Violations detected.
num_rules The number of rules checked before a violation was detected.
severity The severity type being reported.
num_severity The number of violations of that severity type

Note: The <severity> and <num_severity> will be repeated for each severity type.

Here is a sample output using the summary option:

File: design/top/JpegEnc.vhd ERROR (83 rules checked) [Error: 23] [Warning: 0]
File: design/BufFifo/SUB_RAMZ.VHD OK (329 rules checked) [Error: 0] [Warning: 0]
File: design/common/RAMZ.VHD OK (329 rules checked) [Error: 0] [Warning: 0]
File: design/mdct/DBUFCTL.VHD OK (329 rules checked) [Error: 0] [Warning: 0]
File: design/mdct/DCT2D.VHD ERROR (83 rules checked) [Error: 1] [Warning: 0]

Any line with an ERROR will be reported to stderr. Any line with an OK will be reported to stdout.

5.3. Summary 15

vhdl-style-guide Documentation, Release 3.2.0

16 Chapter 5. Formatting Terminal Output

CHAPTER 6

Styles

VSG supports several predefined styles. They can be used with the –style command line option.

The table below lists the built in styles available

Style Description
indent_only Only applies indent rules
jcl Coding style preferred by Jeremiah Leary

6.1 Style Descriptions

6.1.1 indent_only

This style only applies indenting rules.

This style attempts to improve readability by:

• Indenting

– 2 spaces

6.1.2 jcl

This style was in affect before the 2.0.0 release. It maintains the same style as new rules are added.

This style attempts to improve readability by:

• Emphasising non vhdl identifiers by capitalizing them.

– entity names

– architecture names

– ports

17

vhdl-style-guide Documentation, Release 3.2.0

– generics

– etc. . .

• Blank lines added between major items

– processes

– if statements

– case statements

• Alignments

– :’s over entire entities, components, instantiations, etc. . .

– <=’s over groups of sequential statements

– inline comments within processes, architecture declarative regions, etc. . .

• Indenting

– 2 spaces

• Structure

– No single line sequential statements using the when keyword

– No code after the case when statements

– Split if/elsif/else/end if into separate lines

– Removing comments from instantiation and component ports and generics

– No more than two signals can be declared on a single line

6.2 Adjusting built in styles

The built in styles provide several examples of how VHDL code can be formatted to improve readability. This is by
no means the only way. The styles can be modified using the –configuration option.

Follow these steps to adjust the styles to the local flavor:

1. Pick a style that is close to yours

2. Create a configuration to modify the rules which must change

3. Use the style and configuration to analyze your code

6.2.1 Example

Let us assume the jcl style matches 95% of the desired style. The only differences are:

• The entity keyword is always lower case

• Indenting is three spaces instead of two

Create a configuration with the following:

rule:
global:
indentSize: 3

(continues on next page)

18 Chapter 6. Styles

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

entity_004:
case: lower

...

Then use the style and configuration together:

$ vsg --style jcl --configuration my_config.yaml -f fifo.vhd

6.2. Adjusting built in styles 19

vhdl-style-guide Documentation, Release 3.2.0

20 Chapter 6. Styles

CHAPTER 7

Configuring

VSG can use a configuration file to alter it’s behavior and/or include a list of files to analyze. This is accomplished by
passing JSON and/or YAML file(s) through the –configuration command line argument. This is the basic form of a
configuration file in JSON:

{
"file_list":[

"fifo.vhd",
"$PATH_TO_FILE/spi_master.vhd",
"$OTHER_PATH/src/*.vhd",
"source/spi.vhd": {

"rule": {
"ruleId_ruleNumber":"blah"

}
],
"local_rules":"$DIRECTORY_PATH",
"rule":{

"global":{
"attributeName":"AttributeValue"

},
"ruleId_ruleNumber":{

"attributeName":"AttributeValue"
}

}
}

This is the basic form of a configuration file in YAML:

file_list:
- fifo.vhd
- source/spi.vhd:

rule:
ruleId_ruleNumber:
attributeName: AttributeValue

(continues on next page)

21

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

- $PATH_TO_FILE/spi_master.vhd
- $OTHER_PATH/src/*.vhd

local_rules: $DIRECTORY_PATH
rule:
global:
attributeName: AttributeValue

ruleId_ruleNumber:
attributeName: AttributeValue

...

It is not required to have file_list, local_rules, and rule defined in the configuration file. Any combination can be
defined, and the order does not matter.

Note: All examples of configurations in this documentation use JSON. However, YAML can be used instead.

7.1 file_list

The file_list is a list of files that will be analyzed. Environment variables will expanded. File globbing is also sup-
ported. The Environment variables will be expanded before globbing occurs. This option can be useful when running
VSG over multiple files.

Rule configurations can be specified for each file by following the format of the rule configuration.

7.2 local_rules

Local rules can be defined on the command line or in a configuration file. If they are defined in both locations, the
configuration will take precedence.

7.3 rule

Any attribute of any rule can be configured. Using global will set the attribute for every rule. Each rule is addressable
by using it’s unique ruleId and ruleNumber combination. For example, whitespace_006 or port_010.

Note: If global and unique attributes are set at the same time, the unique attribute will take precedence.

Here are a list of attributes that can be altered for each rule:

Attribute Values Description
indentSize Integer Sets the number of spaces for each indent level.
phase Integer Sets the phase the rule will run in.
disable Boolean If set to True, the rule will not run.
fixable Boolean If set to False, the violation will not be fixed

22 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

7.4 Reporting Single Rule Configuration

The configuration for a single rule can be reported using the -rc option:

$ vsg -rc entity_001
{

"rule": {
"entity_001": {

"indentSize": 2,
"phase": 4,
"disable": false,
"fixable": true

}
}

}

VSG will print the configuration for the rule given in a JSON format. This configuration can be altered and added to a
configuration file.

7.5 Reporting Configuration for All Rules

Every rule configuration can be report and saved to a file using the -oc option:

$ vsg -oc configuration.json

The output file will be in JSON format and can be modified and passed back to VSG using the -c option.

7.6 Rule Configuration Priorities

There are three ways to configure a rule. From least to highest priority are:

• [rule][global]

• [rule][<identifier>]

• [file_list][<filename>][rule][<identifier>].

If the same rule is defined in all three locations as in the example below, then the final setting will be equal to the
highest priority.

{
"file_list":[
"entity.vhd":{

"rule":{
"length_001":{
"disable": true

}
}

},
"architecture.vhd",
"package.vhd"
],
"rule":{
"global":{

(continues on next page)

7.4. Reporting Single Rule Configuration 23

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

"disable": true
},
"rule": {

"length_001":{
"disable": false

}
}

}

In this example configuration, all rules are disabled by the global configuration. Then rule length_001 is enabled for
the files architecture.vhd, package.vhd and entity.vhd by the rule configuration. Then rule length_001 is disabled
for the file entity.vhd.

7.7 Example: Disabling a rule

Below is an example of a JSON file which disables the rule entity_004

{
"rule":{

"entity_004":{
"disable":true

}
}

}

Use the configuration with the –configuration command line argument:

$ vsg -f RAM.vhd --configuration entity_004_disable.json

7.8 Example: Setting the indent increment size for a single rule

The indent increment size is the number of spaces an indent level takes. It can be configured on an per rule basis. . .

{
"rule":{

"entity_004":{
"indentSize":4

}
}

}

7.9 Example: Setting the indent increment size for all rules

Configure the indent size for all rules by setting the global attribute.

{
"rule":{

"global":{
"indentSize":4

(continues on next page)

24 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

}
}

}

7.10 Multiple configurations

More than one configuration can be passed using the –configuration option. This can be useful in two situations:

1) Block level configurations

2) Multilevel rule configurations

The priority of the configurations is from right to left. The last configuration has the highest priority. This is true for
all configuration parameters except file_list.

7.10.1 Block level configurations

Many code bases are large enough to be broken into multiple sub blocks. A single configuration can be created and
maintained for each subblock. This allows each subblock to be analyzed independently.

When the entire code base needs be analyzed, all the subblock configurations can be passed to VSG. This reduces the
amount of external scripting required.

config_1.json

{
"file_list":[
"fifo.vhd",
"source/spi.vhd",
"$PATH_TO_FILE/spi_master.vhd",
"$OTHER_PATH/src/*.vhd"

]
}

config_2.json

{
"file_list":[
"dual_port_fifo.vhd",
"flash_interface.vhd",
"$PATH_TO_FILE/ddr.vhd"

]
}

Both configuration files can be processed by vsg with the following command:

$ vsg --configuration config_1.json config_2.json

7.10.2 Multilevel rule configurations

Some code bases may require rule adjustments that apply to all the files along with rule adjustments against individual
files. Use multiple configurations to accomplish this. One configuration can handle code base wide adjustments. A

7.10. Multiple configurations 25

vhdl-style-guide Documentation, Release 3.2.0

second configuration can target individual files. VSG will combine any number of configurations to provide a unique
set of rules for any file.

config_1.json

{
"rule":{

"entity_004":{
"disable":true

},
"entity_005":{

"disable":true
},
"global":{

"indentSize":2
}

}
}

config_2.json

{
"rule":{

"entity_004":{
"disable":false,
"indentSize":4

}
}

}

Both configuration files can be processed by VSG with the following command:

$ vsg --configuration config_1.json config_2.json -f fifo.vhd

VSG will combine the two configurations into this equivalent configuration. . .

{
"rule":{

"entity_004":{
"disable":false,
"indentSize":4

},
"entity_005":{

"disable":true
},
"global":{

"indentSize":2
}

}
}

. . . and run on the file fifo.vhd.

7.11 Configuring Disabled Rules

Each rule is either enabled (actively checked) or disabled (not checked). Each rule can be enabled or disabled by user
configuration.

26 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

Most rules are enabled by default while some are disabled by default. Rules disabled by default are marked by and
are typically naming convention rules. They can be enabled by setting the disable option to False in a configuration.

rule :
<rule_id>:

disable: False

7.11.1 Rules Disabled by Default

• after_001

• after_002

• after_003

• architecture_025

• block_600

• block_601

• block_comment_001

• block_comment_002

• block_comment_003

• comment_011

• constant_015

• generate_017

• generic_020

• instantiation_600

• instantiation_601

• package_016

• package_017

• package_body_600

• package_body_601

• port_011

• port_025

• process_036

• signal_008

• subtype_004

• type_015

• variable_012

7.11. Configuring Disabled Rules 27

configuring.html#configuring-disabled-rules
after_rules.html#after-001
after_rules.html#after-002
after_rules.html#after-003
architecture_rules.html#architecture-025
block_rules.html#block-600
block_rules.html#block-601
block_comment_rules.html#block-comment-001
block_comment_rules.html#block-comment-002
block_comment_rules.html#block-comment-003
comment_rules.html#comment-011
constant_rules.html#constant-015
generate_rules.html#generate-017
generic_rules.html#generic-020
instantiation_rules.html#instantiation-600
instantiation_rules.html#instantiation-601
package_rules.html#package-016
package_rules.html#package-017
package_body_rules.html#package-body-600
package_body_rules.html#package-body-601
port_rules.html#port-011
port_rules.html#port-025
process_rules.html#process-036
signal_rules.html#signal-008
subtype_rules.html#subtype-004
type_rules.html#type-015
variable_rules.html#variable-012

vhdl-style-guide Documentation, Release 3.2.0

7.12 Configuring Uppercase and Lowercase Rules

There are several rules that enforce either uppercase or lowercase. The default for all such rules is lowercase. The
decision was motivated by the fact, that the VHDL language is case insensitive. Having the same default for all case
rules also results in less documentation and code to maintain. The default value for each of these case rules can be
overridden using a configuration.

7.12.1 Overriding Default Lowercase Enforcement

The default lowercase setting can be changed using a configuration.

For example the rule constant_002 can be changed to enforce uppercase using the following configuration:

rule :
constant_002 :

case : 'upper'

7.12.2 Changing Multiple Case Rules

If there are a lot of case rules you want to change, you can use the global option to reduce the size of the configuration.
For example, if you want to uppercase everything except the entity name, you could write the following configuration:

rule :
global :
case : 'upper'

entity_008 :
case : 'lower'

7.12.3 Rules Enforcing Case

• architecture_004

• architecture_009

• architecture_011

• architecture_013

• architecture_014

• architecture_019

• architecture_020

• architecture_021

• architecture_028

• attribute_declaration_500

• attribute_declaration_501

• attribute_declaration_502

28 Chapter 7. Configuring

architecture_rules.html#architecture-004
architecture_rules.html#architecture-009
architecture_rules.html#architecture-011
architecture_rules.html#architecture-013
architecture_rules.html#architecture-014
architecture_rules.html#architecture-019
architecture_rules.html#architecture-020
architecture_rules.html#architecture-021
architecture_rules.html#architecture-028
attribute_declaration_rules.html#attribute-declaration-500
attribute_declaration_rules.html#attribute-declaration-501
attribute_declaration_rules.html#attribute-declaration-502

vhdl-style-guide Documentation, Release 3.2.0

• attribute_specification_500

• attribute_specification_501

• attribute_specification_502

• attribute_specification_503

• block_500

• block_501

• block_502

• block_503

• block_504

• block_505

• block_506

• case_014

• case_015

• case_016

• case_017

• case_018

• component_004

• component_006

• component_008

• component_010

• component_012

• component_014

• constant_002

• constant_004

• constant_011

• constant_013

• context_004

• context_012

• context_013

• context_014

• context_015

• context_016

• context_ref_003

• context_ref_004

• entity_004

• entity_006

7.12. Configuring Uppercase and Lowercase Rules 29

attribute_specification_rules.html#attribute-specification-500
attribute_specification_rules.html#attribute-specification-501
attribute_specification_rules.html#attribute-specification-502
attribute_specification_rules.html#attribute-specification-503
block_rules.html#block-500
block_rules.html#block-501
block_rules.html#block-502
block_rules.html#block-503
block_rules.html#block-504
block_rules.html#block-505
block_rules.html#block-506
case_rules.html#case-014
case_rules.html#case-015
case_rules.html#case-016
case_rules.html#case-017
case_rules.html#case-018
component_rules.html#component-004
component_rules.html#component-006
component_rules.html#component-008
component_rules.html#component-010
component_rules.html#component-012
component_rules.html#component-014
constant_rules.html#constant-002
constant_rules.html#constant-004
constant_rules.html#constant-011
constant_rules.html#constant-013
context_rules.html#context-004
context_rules.html#context-012
context_rules.html#context-013
context_rules.html#context-014
context_rules.html#context-015
context_rules.html#context-016
context_ref_rules.html#context-ref-003
context_ref_rules.html#context-ref-004
entity_rules.html#entity-004
entity_rules.html#entity-006

vhdl-style-guide Documentation, Release 3.2.0

• entity_008

• entity_010

• entity_012

• entity_014

• entity_specification_500

• entity_specification_501

• entity_specification_502

• entity_specification_503

• file_statement_002

• for_loop_003

• function_004

• function_005

• function_010

• function_013

• function_014

• function_017

• generate_005

• generate_009

• generate_010

• generate_012

• generic_007

• generic_009

• generic_017

• generic_map_001

• generic_map_002

• if_statement_025

• if_statement_026

• if_statement_027

• if_statement_028

• if_statement_029

• if_statement_034

• instantiation_008

• instantiation_009

• instantiation_027

• instantiation_031

• library_004

30 Chapter 7. Configuring

entity_rules.html#entity-008
entity_rules.html#entity-010
entity_rules.html#entity-012
entity_rules.html#entity-014
entity_specification_rules.html#entity-specification-500
entity_specification_rules.html#entity-specification-501
entity_specification_rules.html#entity-specification-502
entity_specification_rules.html#entity-specification-503
file_statement_rules.html#file-statement-002
for_loop_rules.html#for-loop-003
function_rules.html#function-004
function_rules.html#function-005
function_rules.html#function-010
function_rules.html#function-013
function_rules.html#function-014
function_rules.html#function-017
generate_rules.html#generate-005
generate_rules.html#generate-009
generate_rules.html#generate-010
generate_rules.html#generate-012
generic_rules.html#generic-007
generic_rules.html#generic-009
generic_rules.html#generic-017
generic_map_rules.html#generic-map-001
generic_map_rules.html#generic-map-002
if_statement_rules.html#if-statement-025
if_statement_rules.html#if-statement-026
if_statement_rules.html#if-statement-027
if_statement_rules.html#if-statement-028
if_statement_rules.html#if-statement-029
if_statement_rules.html#if-statement-034
instantiation_rules.html#instantiation-008
instantiation_rules.html#instantiation-009
instantiation_rules.html#instantiation-027
instantiation_rules.html#instantiation-031
library_rules.html#library-004

vhdl-style-guide Documentation, Release 3.2.0

• library_005

• package_004

• package_006

• package_008

• package_010

• package_013

• package_018

• package_body_500

• package_body_501

• package_body_502

• package_body_503

• package_body_504

• package_body_505

• package_body_506

• package_body_507

• port_010

• port_017

• port_018

• port_019

• port_map_001

• port_map_002

• procedure_007

• procedure_008

• procedure_009

• process_004

• process_005

• process_008

• process_009

• process_013

• process_017

• process_019

• range_001

• range_002

• signal_002

• signal_004

• signal_010

7.12. Configuring Uppercase and Lowercase Rules 31

library_rules.html#library-005
package_rules.html#package-004
package_rules.html#package-006
package_rules.html#package-008
package_rules.html#package-010
package_rules.html#package-013
package_rules.html#package-018
package_body_rules.html#package-body-500
package_body_rules.html#package-body-501
package_body_rules.html#package-body-502
package_body_rules.html#package-body-503
package_body_rules.html#package-body-504
package_body_rules.html#package-body-505
package_body_rules.html#package-body-506
package_body_rules.html#package-body-507
port_rules.html#port-010
port_rules.html#port-017
port_rules.html#port-018
port_rules.html#port-019
port_map_rules.html#port-map-001
port_map_rules.html#port-map-002
procedure_rules.html#procedure-007
procedure_rules.html#procedure-008
procedure_rules.html#procedure-009
process_rules.html#process-004
process_rules.html#process-005
process_rules.html#process-008
process_rules.html#process-009
process_rules.html#process-013
process_rules.html#process-017
process_rules.html#process-019
range_rules.html#range-001
range_rules.html#range-002
signal_rules.html#signal-002
signal_rules.html#signal-004
signal_rules.html#signal-010

vhdl-style-guide Documentation, Release 3.2.0

• signal_011

• signal_014

• subtype_002

• type_definition_002

• type_definition_004

• type_definition_013

• type_definition_014

• variable_002

• variable_004

• variable_010

• variable_011

7.13 Configuring Prefix and Suffix Rules

There are several rules that enforce specific prefixes or suffixes in different name identifiers. It is noted in the docu-
mentation, what the default prefixes and suffixes are for each such rule.

All prefix and suffix rules are disabled by default. The defaults for each of these rules can be overridden using a
configuration.

Note: Some elements have both prefix and suffix rules. Depending on the desired style, either or both can be enabled.

7.13.1 Overriding Default Prefix Enforcement

The default setting can be changed using a configuration. The rule variable_012 defaults to following prefix: [‘v_’].
We can use the following configuration to change allowed prefix:

rule :
variable_012:

Each prefix rule needs to be enabled explicitly.
disable: false
prefixes: ['var_']

7.13.2 Overriding Default Suffix Enforcement

The default setting can be changed using a configuration. For example, the rule port_025 defaults to following suffixes:
[‘_I’, ‘_O’, ‘_IO’]. We can use the following configuration to change allowed suffixes:

rule :
port_025:

Each suffix rule needs to be enabled explicitly.

(continues on next page)

32 Chapter 7. Configuring

signal_rules.html#signal-011
signal_rules.html#signal-014
subtype_rules.html#subtype-002
type_definition.html#type-definition-002
type_definition.html#type-definition-004
type_definition.html#type-definition-013
type_definition.html#type-definition-014
variable_rules.html#variable-002
variable_rules.html#variable-004
variable_rules.html#variable-010
variable_rules.html#variable-011

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

disable: false
suffixes: ['_i', '_o']

7.13.3 Rules Enforcing Prefixes and Suffixes

Element Prefix Rule Suffix Rule
Block Label block_601 block_600
Constant Identifier constant_015 constant_600
Generate Label generate_017 generate_600
Generic Identifier generic_020 generic_600
Package Identifier package_017 package_016
Package Body Identifier package_body_601 package_body_600
Port Identifier port_011 port_025
Process Label process_036 process_600
Signal Identifier signal_008 signal_600
Subtype Identifier subtype_004 subtype_600
Type Identifier type_definition_015 type_definition_600
Variable Identifier variable_012 variable_600

7.14 Configuring Number of Signals in Signal Declaration

VHDL allows of any number of signals to be declared within a single signal declaration. While this may be allowed, in
practice there are limits impossed by the designers. Limiting the number of signals declared improves the readability
of VHDL code.

The default number of signals allowed, 2, can be set by configuring rule signal_015.

7.14.1 Overriding Number of Signals

The default setting can be changed using a configuration. We can use the following configuration to change the number
of signals allowed to 1.

rule :
signal_015 :

consecutive : 1

7.14.2 Rules Enforcing Number of Signals

• signal_015

7.15 Configuring Length Rules

VSG includes several rules enforcing maximum lengths of code structures. These rules are set as warnings.

7.14. Configuring Number of Signals in Signal Declaration 33

block_rules.html#block-601
block_rules.html#block-600
constant_rules.html#constant-015
constant_rules.html#constant-600
generate_rules.html#generate-017
generate_rules.html#generate-600
generic_rules.html#generic-020
generic_rules.html#generic-600
package_rules.html#package-017
package_rules.html#package-016
package_body_rules.html#package-body-601
package_body_rules.html#package-body-600
port_rules.html#port-011
port_rules.html#port-025
process_rules.html#process-036
process_rules.html#process-600
signal_rules.html#signal-008
signal_rules.html#signal-600
subtype_rules.html#subtype-004
subtype_rules.html#subtype-600
type_rules.html#type-015
type_rules.html#type-600
variable_rules.html#variable-012
variable_rules.html#variable-600
signal_rules.html#signal-015

vhdl-style-guide Documentation, Release 3.2.0

7.15.1 Overriding Line Length

Limiting the line length of the VHDL code can improve readability. Code that exceeds the editor window is more
difficult to read. The default line length is 120, and can be changed by configuring rule length_001.

Use the following configuration to change the line length to 180.

rule :
length_001 :

length : 180

7.15.2 Overridding File Line Length

Limiting the length of a VHDL file can improve readability. Excessively long files can indicate the file can be broken
into smaller modules. The default line length is 2000, and can be changed by configuring rule length_002.

Use the following configuration to change the file length to 5000.

rule :
length_002 :

length : 5000

7.15.3 Overridding Process Line Length

Limiting the length of a VHDL processes can improve readability. Processes should perform a limited number of
functions. Smaller processes are easier to understand.

The default length is 500 lines, and can be changed by configuring rule length_003.

Use the following configuration to change the process length to 1000.

rule :
length_003 :

length : 1000

7.15.4 Rules Enforcing Lengths

• length_001

• length_002

• length_003

7.16 Configuring Keyword Alignment Rules

There are several rules that enforce alignment for a group of lines based on the keywords such as ‘after’, ‘<=’ etc.
Some of the configurations are available in all keyword alignment rules, while others are rule specific.

34 Chapter 7. Configuring

length_rules.html#length-001
length_rules.html#length-002
length_rules.html#length-003

vhdl-style-guide Documentation, Release 3.2.0

7.16.1 Common Keyword Alignment Configuration

Following configuration options can be independently changed for each of the keyword alignment rules.

1. compact_alignment - if set to True it enforces single space before alignment keyword in the line with the
longest part before the keyword. Otherwise the alignment occurs to the keyword maximum column. By default
set to True.

Violation

signal sig_short : std_logic;
signal sig_very_long : std_logic;

Fix (compact_alignment = True)

signal sig_short : std_logic;
signal sig_very_long : std_logic;

Fix (compact_alignment = False)

signal sig_short : std_logic;
signal sig_very_long : std_logic;

2. blank_line_ends_group - if set to True any blank line encountered in the VHDL file ends the group of
lines that should be aligned and starts new group. By default set to True.

Violation

signal wr_en : std_logic;
signal rd_en : std_logic;

constant c_short_period : time;
constant c_long_period : time;

Fix (blank_line_ends_group = True)

signal wr_en : std_logic;
signal rd_en : std_logic;

constant c_short_period : time;
constant c_long_period : time;

Fix (blank_line_ends_group = False)

signal wr_en : std_logic;
signal rd_en : std_logic;

constant c_short_period : time;
constant c_long_period : time;

3. comment_line_ends_group - if set to True any purely comment line in the VHDL file ends the group of
lines that should be aligned and starts new group. By default set to True.

Violation

port (
sclk_i : in std_logic;
pclk_i : in std_logic;
rst_i : in std_logic;

(continues on next page)

7.16. Configuring Keyword Alignment Rules 35

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

---- serial interface ----
spi_ssel_o : out std_logic;
spi_sck_o : out std_logic;
spi_mosi_o : out std_logic;
spi_miso_i : in std_logic

);

Fix (comment_line_ends_group = True)

port (
sclk_i : in std_logic;
pclk_i : in std_logic;
rst_i : in std_logic;
---- serial interface ----
spi_ssel_o : out std_logic;
spi_sck_o : out std_logic;
spi_mosi_o : out std_logic;
spi_miso_i : in std_logic

);

Fix (comment_line_ends_group = False)

port (
sclk_i : in std_logic;
pclk_i : in std_logic;
rst_i : in std_logic;
---- serial interface ----
spi_ssel_o : out std_logic;
spi_sck_o : out std_logic;
spi_mosi_o : out std_logic;
spi_miso_i : in std_logic

);

Note: As all keyword alignment rules have above configurations they are not mentioned in the documentation for
each rule.

7.16.2 Rule Specific Keyword Alignment Configuration

1. separate_generic_port_alignment - if set to True alignment within the generic declara-
tive/mapping part is separated from alignment within the port declarative/mapping part. By default set to True.

Violation

generic (
g_width : positive;
g_output_delay : positive

);
port (

clk_i : in std_logic;
data_i : in std_logic;
data_o : in std_logic

);

Fix (separate_generic_port_alignment = True)

36 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

generic (
g_width : positive;
g_output_delay : positive

);
port (

clk_i : in std_logic;
data_i : in std_logic;
data_o : in std_logic

);

Fix (separate_generic_port_alignment = False)

generic (
g_width : positive;
g_output_delay : positive

);
port (

clk_i : in std_logic;
data_i : in std_logic;
data_o : in std_logic

);

2. if_control_statements_end_group - if set to True any line with if control statement ends the group
of lines that should be aligned and starts new group. By default set to True.

Violation

if condition = '1' then
data_valid <= '1';
data <= '1';

else
data_valid <= '0';
hold_transmission <= '1';

end if;

Fix (if_control_statements_end_group = True)

if condition = '1' then
data_valid <= '1';
data <= '1';

else
data_valid <= '0';
hold_transmission <= '1';

end if;

Fix (if_control_statements_end_group = False)

if condition = '1' then
data_valid <= '1';
data <= '1';

else
data_valid <= '0';
hold_transmission <= '1';

end if;

3. case_control_statements_end_group - if set to True any line with case control statement ends the
group of lines that should be aligned and starts new group. By default set to True.

Violation

7.16. Configuring Keyword Alignment Rules 37

vhdl-style-guide Documentation, Release 3.2.0

case A is
when A =>

X <= F;
XY <= G;
XYZ <= H;

when B =>
a <= I;
ab <= h;
c <= a;

when others =>
null;

end case

Fix (case_control_statements_end_group = True)

case A is
when A =>

X <= F;
XY <= G;
XYZ <= H;

when B =>
a <= I;
ab <= h;
c <= a;

when others =>
null;

end case

Fix (case_control_statements_end_group = False)

case A is
when A =>

X <= F;
XY <= G;
XYZ <= H;

when B =>
a <= I;
ab <= h;
c <= a;

when others =>
null;

end case

Note: If given keyword alignment rule has any of the above keyword alignment specific configuration, then it is
explicitly noted in the documentation of this rule.

The default value for each of these case rules can be overridden using a configuration.

7.16.3 Rules Enforcing Keyword Alignment

• after_002

• architecture_026

• architecture_027

38 Chapter 7. Configuring

after_rules.html#after-002
architecture_rules.html#architecture-026
architecture_rules.html#architecture-027

vhdl-style-guide Documentation, Release 3.2.0

• block_401

• component_017

• component_020

• concurrent_006

• concurrent_008

• context_028

• entity_017

• entity_018

• entity_020

• function_012

• generate_401

• generate_403

• generate_405

• instantiation_010

• instantiation_029

• process_033

• process_034

• process_035

• sequential_005

• type_400

• variable_assignment_005

7.17 Configuring Identifier Alignment Rules

There are several rules that enforce alignment of identifiers in group of lines. Some of the configurations are available
in all keyword alignment rules, while others are rule specific.

7.17.1 Common Identifier Alignment Configuration

Following configuration options can be independently changed for each of the identifier alignment rules.

1. blank_line_ends_group - if set to True any blank line encountered in the VHDL file ends the group of
lines that should be aligned and starts new group. By default set to True.

Violation

signal wr_en : std_logic;
file results :

signal rd_en : std_logic;
constant c_short_period : time;

Fix (blank_line_ends_group = True)

7.17. Configuring Identifier Alignment Rules 39

block_rules.html#block-401
component_rules.html#component-017
component_rules.html#component-020
concurrent_rules.html#concurrent-006
concurrent_rules.html#concurrent-008
context_rules.html#context-028
entity_rules.html#entity-017
entity_rules.html#entity-018
entity_rules.html#entity-020
function_rules.html#function-012
generate_rules.html#generate-401
generate_rules.html#generate-403
generate_rules.html#generate-405
instantiation_rules.html#instantiation-010
instantiation_rules.html#instantiation-029
process_rules.html#process-033
process_rules.html#process-034
process_rules.html#process-035
sequential_rules.html#sequential-005
type_rules.html#type-400
variable_assignment_rules.html#variable_assignment-005

vhdl-style-guide Documentation, Release 3.2.0

signal wr_en : std_logic;
file results :

signal rd_en : std_logic;
constant c_short_period : time;

Fix (blank_line_ends_group = False)

signal wr_en : std_logic;
file results :

signal rd_en : std_logic;
constant c_short_period : time;

2. comment_line_ends_group - if set to True any purely comment line in the VHDL file ends the group of
lines that should be aligned and starts new group. By default set to True.

Violation

signal wr_en : std_logic;
file results :
-- some comment
signal rd_en : std_logic;
constant c_short_period : time;

Fix (comment_line_ends_group = True)

signal wr_en : std_logic;
file results :
-- some comment
signal rd_en : std_logic;
constant c_short_period : time;

Fix (comment_line_ends_group = False)

signal wr_en : std_logic;
file results :
-- some comment
signal rd_en : std_logic;
constant c_short_period : time;

Note: As all identifier alignment rules have above configurations they are not mentioned in the documentation for
each rule.

7.17.2 Rules Enforcing Identifier Alignment

• architecture_029

• block_400

• function_015

• generate-400

• generate-402

40 Chapter 7. Configuring

architecture_rules.html#architecture-029
block_rules.html#block-400
function_rules.html#function-015
generate_rules.html#generate-400
generate_rules.html#generate-402

vhdl-style-guide Documentation, Release 3.2.0

• generate-404

• package_body_400

• package_019

• procedure_010

7.18 Configuring Blank Lines

There are rules which will check for blank lines either above or below a line. These rules are designed to improve
readability by separating code using blank lines.

There are a couple of options to these rules, which can be selected by using the style option:

Style Description
no_blank_line Removes blank lines on the line above or below.
require_blank_line Requires a blank line on the line above or below.

rule :
architecture_015:

style : require_blank_line

Warning: It is important to be aware these rules may conflict with rules that enforce rules on previous lines. This
can occur when a below rule is applied and then on the next line a previous rule applies. Resolve any conflicts by
changing the configuration of either rule.

7.18.1 Example: require_blank_line

The following code would fail with this option:

architecture rtl of fifo is
-- Comment

architecture rtl of fifo is
signal s_sig1 : std_logic;

The following code would pass with this option:

architecture rtl of fifo is

-- Comment

architecture rtl of fifo is

signal s_sig1 : std_logic;

7.18.2 Example: no_blank_line

The following code would fail with this option:

7.18. Configuring Blank Lines 41

generate_rules.html#generate-404
package_body_rules.html#package-body-400
package_rules.html#package-019
procedure_rules.html#procedure-010

vhdl-style-guide Documentation, Release 3.2.0

architecture rtl of fifo is

-- Comment

architecture rtl of fifo is

signal s_sig1 : std_logic;

The following code would pass with this option:

architecture rtl of fifo is
-- Comment

architecture rtl of fifo is
signal s_sig1 : std_logic;

7.18.3 Rules Enforcing Blank Lines

• architecture_015

• architecture_016

• architecture_017

• architecture_018

• architecture_200

• block_201

• block_202

• block_203

• block_204

• block_205

• case_008

• case_009

• case_010

• component_018

• context_023

• context_024

• context_025

• function_007

• generate_003

• if_030

• instantiation_019

• package_011

• package_012

• package_body_201

42 Chapter 7. Configuring

architecture_rules.html#architecture-015
architecture_rules.html#architecture-016
architecture_rules.html#architecture-017
architecture_rules.html#architecture-018
architecture_rules.html#architecture-200
block_rules.html#block-201
block_rules.html#block-202
block_rules.html#block-203
block_rules.html#block-204
block_rules.html#block-205
case_rules.html#case-008
case_rules.html#case-009
case_rules.html#case-010
component_rules.html#component-018
context_rules.html#context-023
context_rules.html#context-024
context_rules.html#context-025
function_rules.html#function-007
generate_rules.html#generate-003
if_statement_rules.html#if_statement-030
instantiation_rules.html#instantiation-019
package_rules.html#package-011
package_rules.html#package-012
package_body_rules.html#package-body-201

vhdl-style-guide Documentation, Release 3.2.0

• package_body_202

• package_body_203

• process_011

• process_021

• process_022

• process_023

• process_026

• process_027

• type_011

7.19 Configuring Previous Line Rules

There are rules which will check the contents on lines above code structures. These rules allow enforcement of
comments and blank lines.

There are several options to these rules, which can be selected by using the style option:

Style Description
no_blank_line Removes blank lines on the line above.
re-
quire_blank_line

Requires a blank line on the line above.

no_code Either a blank line; or comment(s) on the line(s) above.
allow_comment Either a blank line; or comment(s) on the line(s) above and a blank line above the comment(s).
require_comment Comment(s) required on the line(s) above and a blank line above the comment(s).

Note: Unless stated in the rule description, the default style is require_blank_line.

Warning: It is important to be aware these rules may conflict with rules that enforce blank lines below keywords.
This can occur when a below rule is applied and then on the next line a previous rule applies. Resolve any conflicts
by changing the configuration of either rule.

This is an example of how to configure these options.

rule :
entity_003:

style : require_blank_line

Note: All examples below are using the rule entity_004.

7.19.1 Example: no_blank

The following code would fail with this option:

7.19. Configuring Previous Line Rules 43

package_body_rules.html#package-body-202
package_body_rules.html#package-body-203
process_rules.html#process-011
process_rules.html#process-021
process_rules.html#process-022
process_rules.html#process-023
process_rules.html#process-026
process_rules.html#process-027
type_rules.html#type-011

vhdl-style-guide Documentation, Release 3.2.0

library fifo_dsn;
-- Define entity

entity fifo is

The following code would pass with this option:

library fifo_dsn;
-- Define entity
entity fifo is

7.19.2 Example: require_blank_line

The following code would fail with this option:

library fifo_dsn;
-- Define entity
entity fifo is

The following code would pass with this option:

library fifo_dsn;
-- Define entity

entity fifo is

7.19.3 Example: no_code

The following code would fail with this option:

library fifo_dsn;
entity fifo is

The following code would pass with this option:

library fifo_dsn;

entity fifo is

library fifo_dsn;
-- Comment

entity fifo is

library fifo_dsn;
-- Comment
entity fifo is

7.19.4 Example: allow_comment

The following code would fail with this option:

44 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

library fifo_dsn;
entity fifo is

library fifo_dsn;
-- Comment
entity fifo is

The following code would pass with this option:

library fifo_dsn;

entity fifo is

library fifo_dsn;
-- Comment

entity fifo is

library fifo_dsn;

-- Comment
entity fifo is

7.19.5 Example: require_comment

The following code would fail these options:

library fifo_dsn;
entity fifo is

library fifo_dsn;
-- Comment
entity fifo is

The following code would pass these options:

library fifo_dsn;

-- Comment
entity fifo is

7.19.6 Rules Enforcing Previous Lines

• architecture_003

• block_200

• case_007

• component_003

• context_003

• entity_003

• function_006

7.19. Configuring Previous Line Rules 45

architecture_rules.html#architecture-003
block_rules.html#block-200
case_rules.html#case-007
component_rules.html#component-003
context_rules.html#context-003
entity_rules.html#entity-003
function_rules.html#function-006

vhdl-style-guide Documentation, Release 3.2.0

• generate_004

• if_031

• instantiation_004

• library_003

• package_003

• package_body_200

• process_015

• type_010

7.20 Configuring Type of Instantiations

There are two methods to instantiate components: component or entity.

VSG can check which method is being used and throw a violation if the incorrect method is detected.

7.20.1 Overriding Type of Instantiation

The default setting is component instantiation. We can use the following configuration to change it to entity instanti-
ation.

rule :
instantiation_034:

method: 'entity'

7.20.2 Rules Enforcing Type of Instantiations

• instantiation_034

7.21 Configuring Optional Items

There are optional language items in VHDL. In the Language Reference Manual (LRM) they are denoted with square
brackets []. Using many of these optional items improves the readability of VHDL code.

However, it may not fit the current style of existing code bases. The rules checking the optional items can be configured
to add or remove them.

7.21.1 Adding Optional Items

This is the default behavior for these rules.

The configuration format to add the optional items is shown below:

46 Chapter 7. Configuring

generate_rules.html#generate-004
if_rules.html#if-031
instantiation_rules.html#instantiation-004
library_rules.html#library-003
package_rules.html#package-003
package_body_rules.html#package-body-200
process_rules.html#process-015
type_rules.html#type-010
instantiation_rules.html#instantiation-034

vhdl-style-guide Documentation, Release 3.2.0

rule :
<rule_id>:

action: 'add'

7.21.2 Removing Optional Items

The configuration format to remove the optional items is shown below:

rule :
<rule_id>:

action: 'remove'

7.21.3 Rules Enforcing Optional Items

• architecture_010

• architecture_024

• block_002

• block_007

• component_021

• context_021

• context_022

• entity_015

• entity_019

• instantiation_033

• package_007

• package_014

• package_body_002

• package_body_003

• process_012

• process_018

7.22 Configuring Block Comments

Block comments are sequential comment lines with a header and footer. Below are several examples of a block
comments:

-- Comment
-- Comment

--================================

(continues on next page)

7.22. Configuring Block Comments 47

architecture_rules.html#architecture-010
architecture_rules.html#architecture-024
block_rules.html#block-002
block_rules.html#block-007
component_rules.html#component-021
context_rules.html#context-021
context_rules.html#context-022
entity_rules.html#entity-015
entity_rules.html#entity-019
instantiation_rules.html#instantiation-033
package_rules.html#package-007
package_rules.html#package-014
package_body_rules.html#package_body-002
package_body_rules.html#package_body-003
process_rules.html#process-012
process_rules.html#process-018

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

-- Comment
-- Comment
--================================

--+-------------------------------
--| Comment
--| Comment
--+-------------------------------

--+---------< header >------------
--| Comment
--| Comment
--+---------< footer >------------

7.22.1 Block Comment Structure

The above examples can be generalized into the following:

--<header_left><header_left_repeat><header_string><header_right_repeat>
--<comment_left>
--<footer_left><footer_left_repeat><footer_string><footer_right_repeat>

Where:

Attribute Values Default Description
header_left String None None The string to place to the right of the –
header_left_repeat String - A character to repeat between header_left and header_string
header_string String None None A string to place in the header.
header_right_repeat String None None A character to repeat after the header-string
comment_left String None None A string which should exist to the right of the –
footer_left String None None The string to place to the right of the –
footer_left_repeat String - A character to repeat between footer_left and footer_string
footer_string String None None A string to place in the footer.
footer_right_repeat String None None A character to repeat after the footer_string

There are additional options for configuring block comments:

Attribute Values De-
fault

Description

min_height Integer 3 Sets minimum number of consecutive comment lines before being con-
sidered a block comment.

header_alignment“left” “center”
“right”

“cen-
ter”

Sets horizontal position of header string.

max_header_columnInteger 120 Sets the maximum length of the combined header.
footer_alignment“left” “center”

“right”
“cen-
ter”

Sets horizontal position of footer string.

max_footer_columnInteger 120 Sets the maximum length of the combined footer.
al-
low_indenting

Boolean True Allows indented block comments. Setting this to False will only detect
block comments starting at column 0.

With these options, a block comment can be validated by VSG.

48 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

7.22.2 Examples

It is important to note the rules are disabled by default. They must enabled using a configuration.

Simple Block Comment

To configure the following example. . .

-- Comment
-- Comment

. . . the configuration would be:

rule:
block_comment_001:
disable : False
header_left : None
header_left_repeat : '-'
header_string : None
header_right_repeat : None

block_comment_002:
disable : False
comment_left : None

block_comment_003:
disable : False
footer_left : None
footer_left_repeat : '-'
footer_string : None
footer_right_repeat : None

Complex Block Comment

To configure the following example. . .

--+-<Header>==============================
--| Purpose:
--| Author:
--+------------------------------<Footer>=

. . . the configuration would be:

rule:
block_comment_001:
disable : False
header_left : '+'
header_left_repeat : '-'
header_string : '<Header>'
header_right_repeat : '='
header_alignment : 'left'

block_comment_002:
disable : False
comment_left : '|'

block_comment_003:
(continues on next page)

7.22. Configuring Block Comments 49

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

disable : False
footer_left : '+'
footer_left_repeat : '-'
footer_string : '<Footer>'
footer_right_repeat : '='
footer_alignment : 'right'

Doxygen Block Comment

Doxygen comments use an exclamation mark. To configure a block comment for Doxygen. . .

--! Comment
--! Comment

. . . the configuration would be:

rule:
block_comment_001:
disable : False
header_left : '-'
header_left_repeat : '-'
header_string : None
header_right_repeat : None

block_comment_002:
disable : False
comment_left : '!'

block_comment_003:
disable : False
footer_left : '-'
footer_left_repeat : '-'
footer_string : None
footer_right_repeat : None

7.22.3 Rules Enforcing Block Comments

• block_comment_001

• block_comment_002

• block_comment_003

7.23 Configuring Indentation

VSG follows a predefined set of rules when indenting VHDL code. The indenting alogrithm is driven by a YAML file.

The indent values feeding the algorithm can be obtained by using the -oc command line argument. There will be a
section starting with indent.

50 Chapter 7. Configuring

block_comment_rules.html#block-comment-001
block_comment_rules.html#block-comment-002
block_comment_rules.html#block-comment-003

vhdl-style-guide Documentation, Release 3.2.0

7.23.1 Understanding the Indent Configuration Data Structure

The indent configuration file follows this basic format:

indent:
tokens:

group_name:
token_name:

token : value
after : value

where:

Attribute Values Description
indent NA Indicates the following information

defines indent behavior.
tokens NA Indicates the following information

defines token level behavior.
group_name <string> The group a token belongs to.
token_name <string> The name of the token which has in-

dent behavior.
token NA Indicates the value to apply to the

token.
after NA Indicates the value to apply after the

token.
value

<integer> current
“+<integer>” “-<integer>”

The type of behavior to apply to the
token or after the token.

The group_name and token_name keys provide unique identifier which can be matched to types of tokens after the
file has been parsed. There are more tokens than are currently defined in the indent configuration, as not all tokens
require indenting rules.

The token key informs VSG how to apply indents when it encounters the token.

The after key informs VSG how to apply indents to successive tokens it encounters.

The value defines the behavior for each token and after key, and are defined as:

Value Type Description
[0-9][0-9]* <integer> Sets the indent level to the specified value.
current <string> Uses the existing indent level.
“+[0-9][0-9]*” <string> Increase the indent relative to the current indent level.
“-[0-9][0-9]*” <string> Decrease the indent relative to the current indent level.

Using the group_name and token_name to identify types of VHDL tokens and then the token and after defines the
behavior of the indenting algorithm.

7.23.2 Example

VSG assumes the closing parenthesis will match with the port keyword.

7.23. Configuring Indentation 51

vhdl-style-guide Documentation, Release 3.2.0

entity some_block is
port (
I_CLK : std_logic;
I_RST : std_logic;
I_WR_EN : std_logic;
O_DATA : std_logic_vector(7 downto 0);

);
end entity some_block;

If we use the following configuration. . .

indent:
tokens:

port_clause:
close_parenthesis:

token : current
after : '-2'

. . . then VSG will enforce the following format:

entity some_block is
port (
I_CLK : std_logic;
I_RST : std_logic;
I_WR_EN : std_logic;
O_DATA : std_logic_vector(7 downto 0);
);

end entity some_block;

How does this work?

VSG is setting the indent levels as it goes. The port definitions in the above example are set to an indent of 2. When
the closing parenthesis is encountered, VSG checks the port_clause.close_parenthesis.token key to determine what
to do. In this case the key is set to current. This tells VSG to keep the indent of 2 for the closing parenthesis token.
VSG then looks at the port_clause.close_parenthesis.after key and finds a ‘-2’. This tells VSG to subtract two from
the current indent value of 2. Which will set the indent to 0. The next token in the indent configuration with a token
key value of current would then get 0.

7.23.3 The Challenge With Adjusting Indent Values

The most difficult part of changing the indent values is knowing which group_name and token_name to use.

For the group_name use the VHDL LRM as a reference. All group names match a left-hand side of a production.

For the token_name, refer to the output configuration using the -oc. This will give the complete indent configuration.
The desired adjustment can be pulled out into a smaller file. This file can then be applied with the -c option.

7.24 Configuring Multiline Indent Rules

There are rules which will check indent of multiline expressions and conditions.

There are several options to these rules:

52 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

Method Type De-
fault

Description

align_left boolean True True = New lines will be aligned left. False = Align to left of assignment operator.
align_paren boolean True True = Use open parenthesis for alignment. False = Do not use open parenthesis

for alignment.

This is an example of how to configure the option.

rule :
constant_012:

align_left : False
align_paren : True

Note: All examples below are using the rule constant_012.

7.24.1 Example: align_left True, align_paren False

The following code would fail with this option:

constant c_const : t_type :=
(
(
a => 0,
b => 1

),
(
c => 0,
d => 1

)
);

constant c_const : t_type :=
(
(
a => 0,
b => 1

),
(
c => 0,
d => 1

)
);

The following code would pass with this option:

constant c_const : t_type :=
(

(
a => 0,
b => 1

),
(
c => 0,

(continues on next page)

7.24. Configuring Multiline Indent Rules 53

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

d => 1
)

);

constant c_const : t_type :=
(

(
a => 0,
b => 1

),
(
c => 0,
d => 1

)
);

7.24.2 Example: align_left False, align_paren False

The following code would fail with this option:

constant c_const : t_type :=
(

(
a => 0,
b => 1

),
(
c => 0,
d => 1

)
);

The following code would pass with this option:

constant c_const : t_type :=
(
(
a => 0,
b => 1

),
(
c => 0,
d => 1

)
);

7.24.3 Example: align_left True, align_paren True

The following code would fail with this option:

constant c_const : t_type := (
1 => func1(
G_GENERIC1, G_GENERIC2)

);

54 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

The following code would pass with this option:

constant c_const : t_type := (
1 => func1(

G_GENERIC1, G_GENERIC2)
);

7.24.4 Rules Enforcing Multiline Indent Rules

• concurrent_003

• if_004

• process_020

• sequential_004

• variable_assignment_004

7.25 Configuring Multiline Structure Rules

There are rules which will check indent and formatting of multiline expressions and conditions.

The alignment of multiline rules is handled by a corresponding rule. Both rules are required to ensure proper formatting
of multiline expressions and conditions. The corresponding rule will be noted in the rule documentation.

There are several options to these rules:

Method Type De-
fault

Description

first_paren_new_line string yes First opening parenthesis on it’s own line.
last_paren_new_line string yes Last closing parenthesis on it’s own line.
open_paren_new_line string yes Insert new line after open parenthesis.
close_paren_new_line string yes Insert new line before close parenthesis.
new_line_after_commastring yes Insert new line after the commas.
as-
sign_on_single_line

string yes Keep assignments on a single line.

ignore_single_line string yes Do not apply rules if expression/condition is contained on a single line.
move_last_comment string ignore If last_paren_new_line is ‘yes’, then move any trailing comments to the

previous line.

The options can be combined to format the output.

Each option except new_line_after_comma and assign_on_single_line allows one of three values: yes,
no and ignore.

Option Value Action
yes Option will be enforced.
no The inverse of the Option will be enforced.
ignore The option will be ignored.

The new_line_after_comma option allows one of four values: yes, no, ignore and ignore_positional.

7.25. Configuring Multiline Structure Rules 55

concurrent_rules.html#concurrent-003
if_rules.html#if-004
process_rules.html#process-020
sequential_rules.html#sequential-004
variable_assignment_rules.html#variable-assignment-004

vhdl-style-guide Documentation, Release 3.2.0

Option Value Action
yes Insert new line after commas.
no Remove new line after commas.
ignore Ignore commas.
ignore_positional Insert new line after commas unless elements are positional.

The assign_on_single_line option allows one of two values: yes and ignore.

Option Value Action
yes Force assignments to a single line.
ignore Allow assignments to span multiple lines.

This is an example of how to configure these options.

rule :
constant_012:

first_paren_new_line : 'yes'
last_paren_new_line : 'yes'
open_paren_new_line : 'yes'
close_paren_new_line : 'yes'
new_line_after_comma : 'ignore'
ignore_single_line : 'no'

Note: All examples below are using the rule constant_016 and the option ignore_single_line is False.

7.25.1 Example: first_paren_new_line

The following code would fail with this option:

constant c_const : t_type := (a => 0, b => 1);

The following code would pass with this option:

constant c_const : t_type :=
(a => 0, b => 1);

7.25.2 Example: last_paren_new_line

The following code would fail with this option:

constant c_const : t_type := (a => 0, b => 1);

The following code would pass with this option:

constant c_const : t_type := (a => 0, b => 1
);

56 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

7.25.3 Example: first_paren_new_line and last_paren_new_line

The following code would fail with this option:

constant c_const : t_type := (a => 0, b => 1);

The following code would pass with this option:

constant c_const : t_type :=
(

a => 0, b => 1
);

7.25.4 Example: new_line_after_comma

The following code would fail with this option:

constant c_const : t_type := (a => 0, b => 1);

The following code would pass with this option:

constant c_const : t_type := (a => 0,
b => 1);

7.25.5 Example: new_line_after_comma and first_paren_new_line and
last_paren_new_line

The following code would fail with this option:

constant c_const : t_type := (a => 0, b => 1);

The following code would pass with this option:

constant c_const : t_type :=
(a => 0,
b => 1);

7.25.6 Example: open_paren_new_line

The following code would fail with this option:

constant c_const : t_type := ((a => 0, b => 1), (c => 0, d => 1));

The following code would pass with this option:

constant c_const : t_type := (
(

a => 0, b => 1), (
c => 0, d => 1));

7.25. Configuring Multiline Structure Rules 57

vhdl-style-guide Documentation, Release 3.2.0

7.25.7 Example: close_paren_new_line

The following code would fail with this option:

constant c_const : t_type := ((a => 0, b => 1), (c => 0, d => 1));

The following code would pass with this option:

constant c_const : t_type := ((a => 0, b => 1
), (c => 0, d => 1
));

7.25.8 Example: open_paren_new_line and close_paren_new_line

The following code would fail with this option:

constant c_const : t_type := ((a => 0, b => 1), (c => 0, d => 1));

The following code would pass with this option:

constant c_const : t_type := (
(

a => 0, b => 1
), (

c => 0, d => 1
));

7.25.9 Example: all options yes

The following code would fail with this option:

constant c_const : t_type := ((a => 0, b => 1), (c => 0, d => 1));

The following code would pass with this option:

constant c_const : t_type :=
(

(
a => 0,
b => 1

),
(
c => 0,
d => 1

)
);

7.25.10 Example: all options no

The following code would pass with this option:

58 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

constant c_const : t_type :=
(

(
a => 0,
b => 1

),
(
c => 0,
d => 1

)
);

The following code would fail with this option:

constant c_const : t_type := ((a => 0, b => 1), (c => 0, d => 1));

7.25.11 Example: assign_on_single_line

The following code would pass with this option set to True:

constant c_const : t_type :=
(

1 => func1(std_logic_vector(G_GEN), G_GEN2),
2 => func1(std_logic_vector(G_GEN), G_GEN2)

);

The following code would fail with this option set to True:

constant c_const : t_type :=
(

1 => func1(std_logic_vector(G_GEN), G_GEN2),
2 => func1(

std_logic_vector(G_GEN), G_GEN2)
);

7.25.12 Example: last_paren_new_line and move_last_comment

The following code would fail with this option:

constant c_const : t_type :=
(

a => 0,
b => 1); -- Comment

The following code would pass with this option:

constant c_const : t_type :=
(

a => 0,
b => 1 -- Comment

);

7.25. Configuring Multiline Structure Rules 59

vhdl-style-guide Documentation, Release 3.2.0

7.25.13 Rules Enforcing Multiline Structure Rules

• concurrent_011

7.26 Configuring Concurrent Alignment Rules

There are rules which will check indent and alignment of multiline conditional expressions and conditional waveforms.

Conditional expressions and conditional waveforms are defined as:

conditional_expressions ::=
expression **when** condition
{ **else** expression **when** condition }
[**else** expression]

conditional_waveforms ::=
waveform **when** condition
{ **else** waveform **when** condition }
[**else** waveform]

Below is an example of a conditional waveform:

architecture rtl of fifo is

begin

output <= '1' when input = "00" else
sig_a or sig_b when input = "01" else
sig_c and sig_d when input = "10" else
'0';

end architecture rtl;

The alignment of multiline rules is handled by a corresponding rule. Both rules are required to ensure proper formatting
of multiline expressions and conditions. The corresponding rule will be noted in the rule documentation.

There are several options to these rules:

Option Type Default Description
align_left string ‘no’ Align multilines to the left.
align_paren string ‘yes’ Indent lines based on parenthesis.
align_when_keywords string ‘no’ Each when keyword will be aligned.
wrap_at_when string ‘yes’ Indent multiline condition at ‘when’ keyword.
align_else_keywords string ‘no’ Each else keyword will be aligned.

The options can be combined to format the conditional expression or conditional waveform.

Each option allows one of two values: ‘yes’ and ‘no’.

Option Value Action
‘yes’ Option will be enforced.
‘no’ The inverse of the Option will be enforced.

This is an example of how to configure these options.

60 Chapter 7. Configuring

concurrent_rules.html#concurrent-011

vhdl-style-guide Documentation, Release 3.2.0

rule :
concurrent_009:

wrap_at_when : 'yes'
align_when_keywords : 'yes'
align_else_keywords : 'yes'
align_left : 'no'

Note: All examples below are using the rule concurrent_009.

7.26.1 Example: indent_condition_at_when

The following code would fail with this option:

output <= '1' when input = "0000" or
input = "1111" else

sig_a or sig_b when input = "0001" and
input = "1001" else

sig_c and sig_d when input = "0010" or
input = "1010" else

'0';

The following code would pass with this option:

output <= '1' when input = "0000" or
input = "1111" else

sig_a or sig_b when input = "0001" and
input = "1001" else

sig_c and sig_d when input = "0010" or
input = "1010" else

'0';

7.26.2 Example: align_when_keywords

The following code would fail with this option:

output <= '1' when input = "00" else
sig_a or sig_b when input = "01" else
sig_c and sig_d when input = "10" else
'0';

The following code would pass with this option:

output <= '1' when input = "00" else
sig_a or sig_b when input = "01" else
sig_c and sig_d when input = "10" else
'0';

7.26.3 Example: align_when_keywords and align_else_keywords

The following code would fail with this option:

7.26. Configuring Concurrent Alignment Rules 61

vhdl-style-guide Documentation, Release 3.2.0

output <= '1' when input = "0000" else
sig_a or sig_b when input = "0100" and input = "1100" else
sig_c when input = "10" else
'0';

The following code would pass with this option:

output <= '1' when input = "0000" else
sig_a or sig_b when input = "0100" and input = "1100" else
sig_c when input = "10" else
'0';

7.26.4 Example: align_left ‘yes’

The following code would fail with this option:

output <= '1' when input = "0000" else
sig_a or sig_b when input = "0100" and input = "1100" else
sig_c when input = "10" else
'0';

The following code would pass with this option:

output <= '1' when input = "0000" else
sig_a or sig_b when input = "0100" and input = "1100" else
sig_c when input = "10" else
'0';

7.26.5 Example: align_left ‘no’

The following code would fail with this option:

output <= '1' when input = "0000" else
sig_a or sig_b when input = "0100" and input = "1100" else
sig_c when input = "10" else
'0';

The following code would pass with this option:

output <= '1' when input = "0000" else
sig_a or sig_b when input = "0100" and input = "1100" else
sig_c when input = "10" else
'0';

7.26.6 Example: align_paren ‘yes’ and align_left ‘no’

The following code would fail with this option:

output <= '1' when func1(func2(G_VALUE1,
G_VALUE2), func3(
G_VALUE3)
) else

'0';

62 Chapter 7. Configuring

vhdl-style-guide Documentation, Release 3.2.0

The following code would pass with this option:

output <= '1' when func1(func2(G_VALUE1,
G_VALUE2), func3(

G_VALUE3)
) else

'0';

7.26.7 Rules Enforcing Conditional Expression

• concurrent_009

7.27 Configuring Concurrent Structure Rules

There are rules which will check the structure of conditional expressions and waveforms.

The alignment of multiline rules is handled by a corresponding rule. Both rules are required to ensure proper formatting
of multiline conditional expressions and waveforms. The corresponding rule will be noted in the rule documentation.

There are several options to these rules:

Method Type De-
fault

Description

new_line_after_assign string no First opening parenthesis on it’s own line.
ignore_single_line string yes Do not apply rules if expression/condition is contained on a single

line.

The options can be combined to format the output.

Each option except ignore_single_line allows one of three values: yes, no and ignore.

Option Value Action
yes Option will be enforced.
no The inverse of the Option will be enforced.
ignore The option will be ignored.

The ignore_single_line option allows one of two values: yes and ignore.

Option Value Action
yes Force assignments to a single line.
ignore Allow assignments to span multiple lines.

This is an example of how to configure these options.

rule :
concurrent_011:

ignore_single_line : 'no'

Note: All examples below are using the rule concurrent_011 and the option ignore_single_line is ‘no’.

7.27. Configuring Concurrent Structure Rules 63

concurrent_rules.html#concurrent-009

vhdl-style-guide Documentation, Release 3.2.0

7.27.1 Example: new_line_after_assign

The following code would fail with this option:

write_en <= '1' when sig1 = "00" else '0';

The following code would pass with this option:

write_en <=
'1' when sig1 = "00" else '0';

7.27.2 Rules Enforcing Conditional Expression Structure

• concurrent_011

64 Chapter 7. Configuring

concurrent_rules.html#concurrent-011

CHAPTER 8

Code Tags

VSG supports inline tags embedded into code to enable or disable rules. This can be useful in fine tuning rule
exceptions within a file. The code tags are embedded in comments similar to pragmas, and must be on it’s own line.

8.1 Full rule exclusion

Entire portions of a file can be ignored using the vsg_off and vsg_on tags.

-- vsg_off
process (write, read, full) is
begin

a <= write;
b <= read;

end process;
-- vsg_on

The vsg_off tag disables all rule checking. The vsg_on tag enables all rule checking, except those disabled by a
configuration.

8.2 Individual Rule Exclusions

Individual rules can be disabled by adding the rule identifier to the vsg_off and vsg_on tags. Multiple identifiers can
be added.

-- vsg_off process_016 process_018
process (write, read, full) is
begin

a <= write;
b <= read;

end process;
-- vsg_on

65

vhdl-style-guide Documentation, Release 3.2.0

The bare vsg_on enables all rules not disabled by a configuration.

Each rule can be independently enabled or disabled:

-- vsg_off process_016 process_018
process (write, read, full) is
begin

a <= write;
b <= read;

end process;

-- vsg_on process_016
FIFO_PROC : process (write, read, full) is
begin

a <= write;
b <= read;

end process;

-- vsg_on process_018
FIFO_PROC : process (write, read, full) is
begin

a <= write;
b <= read;

end process FIFO_PROC;

In the previous example, the process_016 and process_018 are disabled for the first process. Process_018 is disabled
for the second process. No rules are disabled for the third process.

8.3 Next Line Rule Exclusions

Rules can be disabled for a single line using the vsg_disable_next_line tag. Multiple identifiers can be added to a
single tag..

-- vsg_disable_next_line process_016
process (write, read, full) is
begin

a <= write;
b <= read;
-- vsg_disable_next_line process_018

end process;

In the above example, process_016 will only be disabled for the line with the process keyword. Successive processes
without labels will be flagged by process_016.

Sequential next line exclusions will also be honored:

-- vsg_disable_next_line process_002
-- vsg_disable_next_line process_016
process(write, read, full) is
begin

a <= write;
b <= read;
-- vsg_disable_next_line process_018

end process;

In the above example, both process_002 and process_016 will be disabled for the line starting with the process key-
word.

66 Chapter 8. Code Tags

CHAPTER 9

Editor Integration

If your editor can execute programs on the command line, you can run VSG without having to leave your editor. This
brings a new level of efficiency to coding in VHDL.

9.1 VIM

Add the following macro into your .vimrc file:

map <F9> :setl autoread<CR>:let b:current_file = @%<CR>:w!<CR>:execute '!vsg -f ' .
→˓b:current_file ' --fix'<CR><CR>:edit<CR>:setl noautoread<CR>

This macro bound to the <F9> key performs the following steps:

1. Save the current buffer

2. Execute vsg with the –fix option

3. Reload the buffer

When you are editing a file, you can hit <F9> and VSG will run on the current buffer without leaving VIM.

67

vhdl-style-guide Documentation, Release 3.2.0

68 Chapter 9. Editor Integration

CHAPTER 10

Tool Integration

VSG supports integration with other tools via several command line options.

–all-phases Executes all phases without stopping if a violation is found.
–json Filename of JSON file to generate.
–fix_only Filename of JSON file with fix instructions

10.1 –all-phases

VSG has a concept of phases, where violations in one phase should be addressed before moving to the next phase.
The –all-phases option will run an analysis over all the phases. It will not stop if a violation has occured.

This option can be useful when integrating VSG into an editor that supports linters. It is important to note there are
dependencies between some rules. If violations for a later phase are fixed before violations on an earlier phase, it could
lead to reoccurances of violations until the correct order is followed.

10.2 –json

The violations discovered by VSG can be saved in a JSON formatted file. This eases the transferring information from
VSG to another tool.

Below is the basic format of the JSON file:

{
"<filename>": {
"violations": [

{
"rule": <rule_id>,
"linenumber": <linenumber>,
"solution": <solution>

(continues on next page)

69

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

}
]

}
}

where:

<filename> Name of the file violations refer to.
<rule_id> The rule identifier and number.
<linenumber> The linenumber of the violation.
<solution> The solution required to fix the violation.

10.3 –fix_only

Using this option with the –fix option will restrict the rules fixed base on a JSON file. This allows tools a finer
granularity in instructing VSG how to fix a file.

Below is the basic format of the JSON file:

{
"fix": {

"rule": {
"<rule_id>": [<number>]

}
}

}

where:

<rule_id> The rule identifier and number.
<num-
ber>

If this value is “all”, then all violations will be fixed. If it is a series of numbers, then only those lines
will be fixed.

It is important to note there are rules that will modify the line number at which errors occur. The number reported at
the command line or via the –json option are after all rules have been applied. Therefore, when using –fix_only option
the line numbers given in the JSON file may not line up with the line number while VSG is analyzing the file while it
is being modified.

70 Chapter 10. Tool Integration

CHAPTER 11

Pragmas

VSG treats all pragmas as comments. Most pragmas are ignored as they do not affect the style of the code.

However, the following pragmas do affect the parser: –vhdl_comp_off and –vhdl_comp_on.

With these pragmas, it is possible to write code that would not follow the VHDL Language Reference Manual (LRM).

Take the following code as an example:

--vhdl_comp_off
entity FIFO is
--vhdl_comp_on

entity FIFO is
end entity;

A parser which did not take the pragmas into account would fail because the code would appear to the parser as:

entity FIFO is

entity FIFO is
end entity;

Which does not follow the VHDL LRM.

When VSG encounters the –vhdl_comp_off pragma, it will ignore anything after it until it encounters the
–vhdl_comp_on pragma. No formatting will be enforced between the pragmas.

71

vhdl-style-guide Documentation, Release 3.2.0

72 Chapter 11. Pragmas

CHAPTER 12

Localizing

Warning: This information is out of date with the release of 3.0.0

Warning: This information is out of date with the release of 3.0.0

Note: If you have local rules defined in a version prior to 3.0.0, create an issue and I can work with you to convert it
to 3.0.0 format.

VSG supports customization to your coding style standards by allowing localized rules. These rules are stored in a
directory with an __init__.py file and one or more python files. The files should follow the same structure and naming
convention as the rules found in the vsg/rules directory.

The localized rules will be used when the –local_rules command line argument is given or using the local_rules
option in a configuration file.

12.1 Example: Create rule to check for entity and architectures in the
same file.

Let’s suppose in our organization the entity and architecture should be split into separate files. This rule is not in the
base rule set, but we can add it through localization. For this example, we will be setting up the localized rules in your
home directory.

12.1.1 Prepare local rules directory

Create an empty directory with an empty __init__.py file

73

vhdl-style-guide Documentation, Release 3.2.0

$ mkdir ~/local_rules
$ touch ~/local_rules/__init__.py

12.1.2 Create new rule file

We will create a new rule by extending the base rule class.

Note: The file name and class name must start with rule_. Otherwise VSG will not recognize it as a rule.

The rule will be in the localized group. Since this is the first rule, we will number it 001.

from vsg import rule

class rule_001(rule.rule):

def __init__(self):
rule.rule.__init__(self, 'localized', '001')

Referencing the Phases, we decide it should be in phase 1: structural.

from vsg import rule

class rule_001(rule.rule):

def __init__(self):
rule.rule.__init__(self, 'localized', '001')
self.phase = 1

Now we need to add the analyze method to perform the check.

from vsg import rule

class rule_001(rule.rule):

def __init__(self):
rule.rule.__init__(self, 'localized', '001')
self.phase = 1

def analyze(self, oFile):

The built in variables in the vsg.line class can be used to build rules. In this case, the vsg.vhdlFile class has two
attributes (hasEntity and hasArchitecture) that are exactly what we need. We are ready to write the body of the
analyze method:

from vsg import rule

class rule_001(rule.rule):

def __init__(self):
rule.rule.__init__(self, 'localized', '001')

(continues on next page)

74 Chapter 12. Localizing

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

self.phase = 1

def analyze(self, oFile):
if oFile.hasEntity and oFile.hasArchitecture:

self.add_violation(utils.create_violation_dict(1))

The base rule class has an add_violation method which takes a dictionary as an argument. The create_violation_dict
function will create the dictionary. This dictionary can be modified to include other information about the violation.
This method appends the dictionary to a violation list, which is processed later for reporting and fixing purposes. In
this case, any line number will do so we picked 1.

We must decide if we want to give VSG the ability to fix this rule on it’s own. If so, then we will need to write the
_fix_violations method. However, for this violation we want the user to split the file. We will tell VSG the rule is not
fixable.

from vsg import rule

class rule_001(rule.rule):

def __init__(self):
rule.rule.__init__(self, 'localized', '001')
self.phase = 1
self.fixable = False # User must split the file

def analyze(self, oFile):
if oFile.hasEntity and oFile.hasArchitecture:

self.add_violation(utils.create_violation_dict(1))

We also need to provide a solution to the user so they will know how to fix the violation:

from vsg import rule

class rule_001(rule.rule):

def __init__(self):
rule.rule.__init__(self, 'localized', '001')
self.phase = 1

self.fixable = False # User must split the file
self.solution = 'Split entity and architecture into seperate files.'

def analyze(self, oFile):
if oFile.hasEntity and oFile.hasArchitecture:

self.add_violation(utils.create_violation_dict(1))

Finally, we need to add a code tag check so the rule can be disabled via comments in the code:

from vsg import rule

class rule_001(rule.rule):

def __init__(self):

(continues on next page)

12.1. Example: Create rule to check for entity and architectures in the same file. 75

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

rule.rule.__init__(self, 'localized', '001')
self.phase = 1
self.fixable = False # User must split the file
self.solution = 'Split entity and architecture into seperate files.'

def analyze(self, oFile):
if not self.is_vsg_off(oLine):

if oFile.hasEntity and oFile.hasArchitecture:
self.add_violation(utils.create_violation_dict(1))

The rule is complete, so we save it as rule_localized_001.py. Performing an ls on our local_rules directory:

$ ls ~/local_rules
__init__.py rule_localized_001.py

12.1.3 Use new rule to analyze

When we want to run with localized rules, use the –local_rules option.

$ vsg -f RAM.vhd --local_rules ~/local_rules
File: RAM.vhd
==============
Phase 1... Reporting
localized_001 | 1 | Split entity and architecture into seperate
→˓files.
Phase 2... Not executed
Phase 3... Not executed
Phase 4... Not executed
Phase 5... Not executed
Phase 6... Not executed
Phase 7... Not executed
==============
Total Rules Checked: 50
Total Failures: 1

Our new rule will now flag files which have both an entity and an architecture in the same file. That was a fairly simple
rule. To write more complex rules, it is important to understand how the rule class works.

12.2 Understanding the Rule class

Every rule uses the base rule class. There are a few methods to the base rule class, but we are interested in only the
following:

Method Description
add_violations Adds violations to a list.
analyze Calls _pre_analyze and then _analyze.
_analyze Code that performs the analysis.
fix calls analyze and then _fix_violations.
_fix_violations Code that fixes the violations.
_get_solution Prints out the solution to stdout.
_pre_analyze Code that sets up variables for _analyze.

76 Chapter 12. Localizing

vhdl-style-guide Documentation, Release 3.2.0

We will look at the rule constant_014 to illustrate how VSG uses the methods above:

class rule_014(rule.rule):
'''
Constant rule 014 checks the indent of multiline constants that are not arrays.
'''

def __init__(self):
rule.rule.__init__(self)
self.name = 'constant'
self.identifier = '014'
self.solution = 'Align with := keyword on constant declaration line.'
self.phase = 5

def _pre_analyze(self):
self.alignmentColumn = 0
self.fKeywordFound = False

def _analyze(self, oFile, oLine, iLineNumber):
if not oLine.isConstantArray and oLine.insideConstant:

if oLine.isConstant and ':=' in oLine.line:
self.alignmentColumn = oLine.line.index(':=') + len(':= ')
self.fKeywordFound = True

elif not oLine.isConstant and self.fKeywordFound:
sMatch = ' ' * self.alignmentColumn
if not re.match('^' + sMatch + '\w', oLine.line):

self.add_violation(utils.create_violation_dict(LineNumber))
self.dFix['violations'][iLineNumber] = self.alignmentColumn

if oLine.isConstantEnd:
self.fKeywordFound = False

def _fix_violations(self, oFile):
for iLineNumber in self.violations:

sLine = oFile.lines[iLineNumber].line
sNewLine = ' ' * self.dFix['violations'][iLineNumber] + sLine.strip()
oFile.lines[iLineNumber].update_line(sNewLine)

12.2.1 Creating Class

First we create the rule by inheriting from the base rule class. We also add a comment to describe what the rule is
doing.

class rule_014(rule.rule):
'''
Constant rule 014 checks the indent of multiline constants that are not arrays.
'''

12.2.2 Adding __init__

Then we add the __init__ method. It calls the init of the base rule class, then we modify attributes for this specific
rule:

def __init__(self):
rule.rule.__init__(self)

(continues on next page)

12.2. Understanding the Rule class 77

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

self.name = 'constant'
self.identifier = '014'
self.solution = 'Align with := keyword on constant declaration line.'
self.phase = 5

For this rule we set it’s name, identifier, solution, and phase.

12.2.3 Analyzing Considerations

The analyze method of the base rule class will first call _pre_anaylze before _analyze. The _analyze method is
wrapped in a loop that increments through each line of the file. The analyze method also checks if the rule has been
turned off for a line, via code tags. If the code tag indicates to ignore the line, then it will be skipped. If you decide to
override the analyze method, then you should add the code tag check.

12.2.4 Adding _pre_analyze method

In this rule, we use the _pre_analyze method to initialize some variables. These variables must be set outside the loop
that is present in the analyze method.

def _pre_analyze(self):
self.alignmentColumn = 0
self.fKeywordFound = False

12.2.5 Adding _analyze method

The _analyze method is called on every line of the VHDL file. Any memory needed between lines must be declared
in the _pre_analyze method. In the following code, notice self.alignmentColumn and self.fKeywordFound.

def _analyze(self, oFile, oLine, iLineNumber):
if not oLine.isConstantArray and oLine.insideConstant:

if oLine.isConstant and ':=' in oLine.line:
self.alignmentColumn = oLine.line.index(':=') + len(':= ')
self.fKeywordFound = True

elif not oLine.isConstant and self.fKeywordFound:
sMatch = ' ' * self.alignmentColumn
if not re.match('^' + sMatch + '\w', oLine.line):

self.add_violation(utils.create_violation_dict(LineNumber))
self.dFix['violations'][iLineNumber] = self.alignmentColumn

if oLine.isConstantEnd:
self.fKeywordFound = False

This code is searching for the characteristics of a non-array constant.

def _analyze(self, oFile, oLine, iLineNumber):
if not oLine.isConstantArray and oLine.insideConstant:

Once the non-array constant is found, it notes the column of the := keyword.

if oLine.isConstant and ':=' in oLine.line:
self.alignmentColumn = oLine.line.index(':=') + len(':= ')
self.fKeywordFound = True

78 Chapter 12. Localizing

vhdl-style-guide Documentation, Release 3.2.0

On successive lines of the constant declaration, it checks to see if there are enough spaces from the beginning of the
line to match the column number the := is located at.

elif not oLine.isConstant and self.fKeywordFound:

If there are not enough spaces, then a violation is added. We also store off the required column into a predefined
dictionary named dFix. This will be used later when the fix method is called.

sMatch = ' ' * self.alignmentColumn
if not re.match('^' + sMatch + '\w', oLine.line):

self.add_violation(utils.create_violation_dict(LineNumber))
self.dFix['violations'][iLineNumber] = self.alignmentColumn

When we detect the end of the constant declaration, we clear a flag and prepare for the next constant declaration.

if oLine.isConstantEnd:
self.fKeywordFound = False

12.2.6 Fixing considerations

The fix method will first call the analyze method and then the _fix_violations method. Unlike the analyze method, it
does not wrap the _fix_violations in a loop. This is due to some fixes needing to execute either top down or bottom
up. Rules that add or delete lines need to work from the bottom up. Otherwise, the violations detected by the analyze
method will have moved.

12.2.7 Adding the _fix_violations method

In this rule, we are going to iterate on all the violations in the self.violations attribute.

def _fix_violations(self, oFile):
for iLineNumber in self.violations:

We store the current line off to make it easier to read. Then we strip the line of all leading and trailing spaces and
prepend the number of spaces required to align with the := keyword.

sLine = oFile.lines[iLineNumber].line
sNewLine = ' ' * self.dFix['violations'][iLineNumber] + sLine.strip()

Finally, we update the line with our modified line using the update_line method.

oFile.lines[iLineNumber].update_line(sNewLine)

12.3 Violation dictionary

Violations are stored as a list of dictionaries in the rule.violations attribute. This is the generic format of the dictionary
represented by json:

{
"lines" : [

{
"number" : "<integer>",

(continues on next page)

12.3. Violation dictionary 79

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

"<line_attribute>" : "<line_value>",
"<line_attribute>" : "<line_value>"

}
],

"<violation_attribute>" : "<violation_value>",
"<violation_attribute>" : "<violation_value>"

}

This format gives us the greatest flexibility in describing violations. The lines[0][‘number’] is the only required
element in a violation dictionary. The “<line_attribute>” and “<violation_attribute>” elements are optional. They are
used by more complex rules to maintain information used to fix violations.

12.3.1 Single line violations

Most violations are against a single line and no other information is required to fix it. These dictionaries use the
minimumal form.

{
"lines" : [

{
"number" : 40

}
]

}

12.3.2 Single line violations with additional information

If additional information for single line violations is required, it will be stored at the violation level.

{
"lines" : [
{

"number" : 40
}

],
"label" : "FIFO"

}

This violation is indicating there is an issue at line 40 with the label “FIFO”. The “label” element will be used to fix
the violation.

12.3.3 Multiple line violations

If a rule covers multiple lines, then information about individual lines can be stored:

{
"lines" : [
{

"number" : 40,
"column" : 20

},
{

(continues on next page)

80 Chapter 12. Localizing

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

"number" : 41,
"column" : 35

}
],
"desired_column" : 15

}

In the above case, we are trying to align a keyword over multiple lines. Each line which is not aligned is reported
in the lines list. The column attribute indicates which column the keyword was found. The desired_column, which
applies to all lines in the lines list, indicates which column the keyword should be located.

This violation would cover a group of multiple lines. If there were violations in multiple groups, then each group with
get it’s own violation dictionary.

12.3.4 utils functions

There are three functions in the utils module to help with managing the violation dictionary: create_violation_dict,
get_violation_line_number and get_violating_line. The create_violation_dict will return a dictionary in the form
of the single line violation described above. Use this to create the initial violation and add to it as necessary.

The get_violation_line_number will return the lines[‘number’] attribute of the violation. Use this function to abstract
away the line number from the underlying data structure.

The get_violating_line will return a line object at the line the violation occured. This is easier than manually indexing
into the oFile list to pull out a line.

12.4 Rule creation guidelines

Keep these points in mind when creating new rules:

1. Use an existing rule as a starting point

2. Remember that analyze calls _pre_analyze and then _analyze

3. Override _get_solution to return complex messages

4. analyze method can be overridden if necessary

5. If overriding analyze, then include a check for vsg_off

12.4. Rule creation guidelines 81

vhdl-style-guide Documentation, Release 3.2.0

82 Chapter 12. Localizing

CHAPTER 13

Phases

Rules are grouped together and executed in phases. This simplifies rule generation for rules in later phases. If issues
are found during a phase, then successive phases will not be run. The phases are constructed to model the proper order
of fixing issues. Each phase prepares the code for the next phase.

Which phase a rule is executed in is indicated by one of these phase labels:

13.1 Phase - Structural

This ensures the VHDL is structured properly for future phases.

It includes the following operations:

• Addition or removal of optional VHDL elements

• Addition or carriage returns to split lines

• Removal of carriage returns to combine lines

13.2 Phase - Whitespace

This phase checks whitespace rules.

It includes the following operations:

• Addition of whitespace between VHDL elements

• Reduction of whitespace between VHDL elements

83

phases.html
phases.html
phases.html
phases.html
phases.html
phases.html
phases.html

vhdl-style-guide Documentation, Release 3.2.0

13.3 Phase - Vertical Spacing

This phase checks vertical spacing between lines.

It includes the following operations:

• Addition of carriage returns to emphasize VHDL elements

• Removal of carriage returns to deemphasize VHDL elements

13.4 Phase - Indentation

This phase checks the indent of lines.

13.5 Phase - Alignment

This phase checks VHDL elements are column aligned.

It includes the following operations:

• Alignment of colons

• Alignment of assignment operators

• Alignment of identifiers

13.6 Phase - Capitalization

This phase checks case of VHDL elements.

It includes the following operations:

• Case of VHDL keywords

• Case of identifiers

13.7 Phase - Naming conventions

This phase checks naming conventions for non VHDL keywords.

It includes the following operations:

• Signal prefixes

• Port prefixes and suffixes

• Architecture identifiers

13.8 Subphases

Each phase can have multiple subphases. There are rules which are executed within the same phase, but one is
dependent on another. Utilizing a subphase allows for the proper execution of the rules.

84 Chapter 13. Phases

vhdl-style-guide Documentation, Release 3.2.0

13.8.1 Subphase 1

Prepare code for rules in subphase 2.

13.8.2 Subphase 2

Execute on code prepared in subphase 1.

13.8. Subphases 85

vhdl-style-guide Documentation, Release 3.2.0

86 Chapter 13. Phases

CHAPTER 14

Rule Severity

VSG supports rule severity with two built in levels: Error and Warning. The default behavior for most rules is Error.
Only the Error severity level will result in an exit status of 1. Errors will also be the only errors written to a JUnit
XML file if that option is chosen.

The severity level of each rule is indicated with one of the following icons in the rule description:

Warning :

Error:

The table below summarizes the built-in severities:

Name Type Exit Status JUnit Syntastic Description
Error error 1 Yes ERROR A rule which must be fixed.
Warning warning 0 No WARNING A rule which should be fixed.

14.1 Configuring Severity Levels

The existing severity level of a rule can be configured. For example, if you want to change the line length rule,
length_001, to an Error instead of a Warning, use the following configuration:

{
"rule":{

"length_001":{
"severity": "Error"

}
}

}

87

rule_severity.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

14.2 Defining Severity Levels

VSG supports user defined severity level. Any new severity level will follow the same rules as the severity it is based
on. It will be reported to the screen, but will not be reported in JUnit XML files and will not force an exit status of 1.

To create your own severity level, create a configuration which defines just the severity level following this format:

{
"severity":{

"Future":{
"type":"warning"

},
"Todo":{

"type":"error"
}

}
}

This configuration defines two new severities: Future and Todo. The Future severity is set to the warning type. The
Todo severity is set to the error type.

The newly defined severity levels can then be applied to a rule using a second configuration.

{
"rule":{

"length_001":{
"severity": "Future"

}
}

}

Apply the defined severity levels by calling both configurations:

vsg -c severity.json rule_configuration.json -f fifo.vhd

14.2.1 Rules Which are Warnings by Default

• length_001

• length_002

• length_003

88 Chapter 14. Rule Severity

CHAPTER 15

Rules

The rules are divided into catagories depending on the part of the VHDL code being operated on.

15.1 After Rules

15.1.1 after_001

This rule checks for after x in signal assignments in clock processes.

Violation

clk_proc : process(clock, reset) is
begin

if (reset = '1') then
a <= '0';
b <= '1';

elsif (clock'event and clock = '1') then
a <= d;
b <= c;

end if;
end process clk_proc;

Fix

clk_proc : process(clock, reset) is
begin

if (reset = '1') then
a <= '0';
b <= '1';

elsif (clock'event and clock = '1') then
a <= d after 1 ns;

(continues on next page)

89

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

b <= c after 1 ns;
end if;

end process clk_proc;

Note: This rule has two configurable items:

• magnitude

• units

The magnitude is the number of units. Default is 1.

The units is a valid time unit: ms, us, ns, ps etc. . . Default is ns.

15.1.2 after_002

This rule checks the after keywords are aligned in a clock process. Refer to the section Configuring Keyword Align-
ment Rules for information on changing the configurations.

Violation

clk_proc : process(clock, reset) is
begin

if (reset = '1') then
a <= '0';
b <= '1';

elsif (clock'event and clock = '1') then
a <= d after 1 ns;
b <= c after 1 ns;

end if;
end process clk_proc;

Fix

clk_proc : process(clock, reset) is
begin

if (reset = '1') then
a <= '0';
b <= '1';

elsif (clock'event and clock = '1') then
a <= d after 1 ns;
b <= c after 1 ns;

end if;
end process clk_proc;

15.1.3 after_003

This rule checks the after keywords do not exist in the reset portion of a clock process.

Violation

90 Chapter 15. Rules

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
configuring.html#configuring-keyword-alignment-rules
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

clk_proc : process(clock, reset) is
begin

if (reset = '1') then
a <= '0' after 1 ns;
b <= '1' after 1 ns;

elsif (clock'event and clock = '1') then
a <= d after 1 ns;
b <= c after 1 ns;

end if;
end process clk_proc;

Fix

clk_proc : process(clock, reset) is
begin

if (reset = '1') then
a <= '0';
b <= '1';

elsif (clock'event and clock = '1') then
a <= d after 1 ns;
b <= c after 1 ns;

end if;
end process clk_proc;

15.2 Architecture Rules

15.2.1 architecture_001

This rule checks for blank spaces before the architecture keyword.

Violation

architecture rtl of fifo is
begin

Fix

architecture rtl of fifo is
begin

15.2.2 architecture_002

This rule has been split into the following rules:

• architecture_030

• architecture_031

• architecture_032

• architecture_033

15.2. Architecture Rules 91

phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.2.3 architecture_003

This rule checks for a blank lines or comments above the architecture declaration.

Refer to Configuring Previous Line Rules for options.

Violation

library ieee;
architecture rtl of fifo is

Fix

library ieee;

architecture rtl of fifo is

15.2.4 architecture_004

This rule checks the proper case of the architecture keyword in the architecture declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

ARCHITECTURE rtl of fifo is

architecture rtl of fifo is

15.2.5 architecture_005

This rule checks the of keyword is on the same line as the architecture keyword.

Violation

architecture rtl
of fifo is

Fix

architecture rtl of
fifo is

15.2.6 architecture_006

This rule checks the is keyword is on the same line as the architecture keyword.

Violation

92 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

architecture rtl of fifo
is

architecture rtl of fifo

Fix

architecture rtl of fifo is

architecture rtl of fifo is

15.2.7 architecture_007

This rule checks for spaces before the begin keyword.

Violation

architecture rtl of fifo is
begin

Fix

architecture rtl of fifo is
begin

15.2.8 architecture_008

This rule checks for spaces before the end architecture keywords.

Violation

architecture rtl of fifo is
begin

end architecture

Fix

architecture rtl of fifo is
begin
end architecture

15.2.9 architecture_009

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

15.2. Architecture Rules 93

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

END architecture;

End architecture;

Fix

end architecture;

end architecture;

15.2.10 architecture_010

This rule checks for the keyword architecture in the end architecture statement. It is clearer to the reader to state
what is ending.

Refer to the section Configuring Optional Items for options.

Violation

end architecture_name;

Fix

end architecture architecture_name;

15.2.11 architecture_011

This rule checks the architecture name case in the end architecture statement.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end architecture ARCHITECTURE_NAME;

Fix

end architecture architecture_name;

15.2.12 architecture_012

This rule checks for a single space between end and architecture keywords.

Violation

end architecture architecture_name;

Fix

94 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

end architecture architecture_name;

15.2.13 architecture_013

This rule checks the case of the architecture name in the architecture declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

architecture RTL of fifo is

Fix

architecture rtl of fifo is

15.2.14 architecture_014

This rule checks the case of the entity name in the architecture declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

architecture rtl of FIFO is

Fix

architecture rtl of fifo is

15.2.15 architecture_015

This rule checks for blank lines below the architecture declaration.

Refer to Configuring Blank Lines for options.

Violation

architecture rtl of fifo is
signal wr_en : std_logic;

begin

Fix

architecture rtl of fifo is

signal wr_en : std_logic;
begin

15.2. Architecture Rules 95

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-blank-lines

vhdl-style-guide Documentation, Release 3.2.0

15.2.16 architecture_016

This rule checks for blank lines above the begin keyword.

Refer to Configuring Blank Lines for options.

Violation

architecture rtl of fifo is

signal wr_en : std_logic;
begin

Fix

architecture rtl of fifo is

signal wr_en : std_logic;

begin

15.2.17 architecture_017

This rule checks for a blank line below the begin keyword.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

begin
wr_en <= '0';

Fix

begin

wr_en <= '0';

15.2.18 architecture_018

This rule checks for blank lines or comments above the end architecture declaration.

Refer to Configuring Blank Lines for options.

Violation

rd_en <= '1';
end architecture RTL;

Fix

96 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines

vhdl-style-guide Documentation, Release 3.2.0

rd_en <= '1';

end architecture RTL;

15.2.19 architecture_019

This rule checks the proper case of the of keyword in the architecture declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

architecture rtl OF fifo is

Fix

architecture rtl of fifo is

15.2.20 architecture_020

This rule checks the proper case of the is keyword in the architecture declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

architecture rtl of fifo IS

Fix

architecture rtl of fifo is

15.2.21 architecture_021

This rule checks the proper case of the begin keyword.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

architecture rtl of fifo is
BEGIN

Fix

architecture rtl of fifo is
begin

15.2. Architecture Rules 97

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.2.22 architecture_022

This rule checks for a single space before the entity name in the end architecture declaration.

Violation

end architecture fifo;

Fix

end architecture fifo;

15.2.23 architecture_024

This rule checks for the architecture name in the end architecture statement. It is clearer to the reader to state which
architecture the end statement is closing.

Refer to the section Configuring Optional Items for options.

Violation

end architecture;

Fix

end architecture architecture_name;

15.2.24 architecture_025

This rule checks for valid names for the architecture. Typical architecture names are: RTL, EMPTY, and BEHAVE.
This rule allows the user to restrict what can be used for an architecture name.

Note: This rule is disabled by default. You can enable and configure the names using the following configuration.

rule :
architecture_025 :
disabled : False
names :

- rtl
- empty
- behave

Violation

architecture some_invalid_arch_name of entity1 is

98 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Fix

The user is required to decide which is the correct architecture name.

15.2.25 architecture_026

This rule checks the colons are in the same column for all declarations in the architecture declarative part.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

architecture rtl of my_entity is

signal wr_en : std_logic;
signal rd_en : std_logic;
constant c_period : time;

begin

Fix

architecture rtl of my_entity is

signal wr_en : std_logic;
signal rd_en : std_logic;
constant c_period : time;

begin

15.2.26 architecture_027

This rule checks the alignment of inline comments in the architecture declarative part.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

architecture rtl of my_entity is

signal wr_en : std_logic; -- Comment 1
signal rd_en : std_logic; -- Comment 2
constant c_period : time; -- Comment 3

begin

Fix

architecture rtl of my_entity is

signal wr_en : std_logic; -- Comment 1
signal rd_en : std_logic; -- Comment 2
constant c_period : time; -- Comment 3

(continues on next page)

15.2. Architecture Rules 99

phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

begin

15.2.27 architecture_028

This rule checks the architecture keyword in the end architecture has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end ARCHITECTURE;

end Architecture;

Fix

end architecture;

end architecture;

15.2.28 architecture_029

This rule checks for alignment of identifiers in attribute, type, subtype, constant, signal, variable and file declarations
in the architecture declarative region.

Refer to the section Configuring Identifier Alignment Rules for information on changing the configurations.

Violation

signal sig1 : std_logic;
file some_file :
variable v_var1 : std_logic;
type t_myType : std_logic;

Fix

signal sig1 : std_logic;
file some_file :
variable v_var1 : std_logic;
type t_myType : std_logic;

15.2.29 architecture_030

This rule checks for a single space between architecture and the identifier.

Violation

100 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-identifier-alignment-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

architecture rtl of fifo is

Fix

architecture rtl of fifo is

15.2.30 architecture_031

This rule checks for a single space between the identifier and the of keyword.

Violation

architecture rtl of fifo is

Fix

architecture rtl of fifo is

15.2.31 architecture_032

This rule checks for a single space between the of keyword and the entity_name.

Violation

architecture rtl of fifo is

Fix

architecture rtl of fifo is

15.2.32 architecture_033

This rule checks for a single space between the entity_name and the is keyword.

Violation

architecture rtl of fifo is

Fix

architecture rtl of fifo is

15.2.33 architecture_200

This rule checks for a blank line below the end architecture statement.

15.2. Architecture Rules 101

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

end architecture;
library ieee;

Fix

end architecture;

library ieee;

15.2.34 architecture_600

This rule checks for consistent capitalization of generic names in an architecture body.

Violation

entity FIFO is
generic (
G_WIDTH : natural := 16

);
end entity fifo;

architecture rtl of fifo is

signal w_data : std_logic_vector(g_width - 1 downto 0);

begin

output <= large_data(g_width - 1 downto 0);

end architecture rtl;

Fix

entity FIFO is
generic (
G_WIDTH : natural := 16

);
end entity fifo;

architecture rtl of fifo is

signal w_data : std_logic_vector(G_WIDTH - 1 downto 0);

begin

output <= large_data(G_WIDTH - 1 downto 0);

end architecture rtl;

102 Chapter 15. Rules

configuring.html#configuring-blank-lines
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.3 Assert Rules

15.3.1 assert_001

This rule checks indent of multiline assert statements.

Violation

assert WIDTH > 16
report "FIFO width is limited to 16 bits."

severity FAILURE;

Fix

assert WIDTH > 16
report "FIFO width is limited to 16 bits."
severity FAILURE;

15.3.2 assert_002

This rule checks the report keyword is on it’s own line for concurrent assertion statements.

Violation

architecture rtl of fifo is
begin

assert WIDTH > 16 report "FIFO width is limited to 16 bits."
severity FAILURE;

end architecture rtl;

Fix

architecture rtl of fifo is
begin

assert WIDTH > 16
report "FIFO width is limited to 16 bits."
severity FAILURE;

end architecture rtl;

15.3.3 assert_003

This rule checks the report keyword is on it’s own line for assertion statements.

Violation

architecture rtl of fifo is
begin

(continues on next page)

15.3. Assert Rules 103

phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

process
begin

assert WIDTH > 16 report "FIFO width is limited to 16 bits."
severity FAILURE;

end process;

end architecture rtl;

Fix

architecture rtl of fifo is
begin

process
begin

assert WIDTH > 16
report "FIFO width is limited to 16 bits."
severity FAILURE;

end process;

end architecture rtl;

15.3.4 assert_004

This rule checks the severity keyword is on it’s own line for concurrent assertion statements.

Violation

architecture rtl of fifo is
begin

assert WIDTH > 16
report "FIFO width is limited to 16 bits." severity FAILURE;

end architecture rtl;

Fix

architecture rtl of fifo is
begin

assert WIDTH > 16
report "FIFO width is limited to 16 bits."
severity FAILURE;

end architecture rtl;

15.3.5 assert_400

104 Chapter 15. Rules

phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

This rule checks the alignment of the report expressions.

Note: There is a configuration option alignment which changes the indent location of multiple lines.

alignment set to ‘report’ (Default)

Violation

assert WIDTH > 16
report "FIFO width is limited" &

" to 16 bits."
severity FAILURE;

Fix

assert WIDTH > 16
report "FIFO width is limited" &

" to 16 bits."
severity FAILURE;

alignment set to ‘left’

Violation

assert WIDTH > 16
report "FIFO width is limited" &

" to 16 bits."
severity FAILURE;

Fix

assert WIDTH > 16
report "FIFO width is limited" &
" to 16 bits."

severity FAILURE;

15.4 Attribute Rules

15.4.1 attribute_001

This rule has been superceeded by:

• attribute_declaration_300

• attribute_specification_300

15.4.2 attribute_002

This rule has been superceeded by:

• attribute_declaration_500

15.4. Attribute Rules 105

attribute_declaration_rules.html#attribute-declaration-300
attribute_specification_rules.html#attribute-specification-300
attribute_declaration_rules.html#attribute-declaration-500

vhdl-style-guide Documentation, Release 3.2.0

• attribute_specification_500

15.5 Attribute Declaration Rules

15.5.1 attribute_declaration_100

This rule checks for a single space after the following elements: attribute keyword and colon.

Violation

attribute max_delay : time;

Fix

attribute max_delay : time;

15.5.2 attribute_declaration_101

This rule checks for at least a single space before the colon.

Violation

attribute max_delay: time;

Fix

attribute max_delay : time;

15.5.3 attribute_declaration_300

This rule checks the indent of the attribute keyword.

Violation

signal sig1 : std_logic;
attribute max_delay : time;

Fix

signal sig1 : std_logic;
attribute max_delay : time;

15.5.4 attribute_declaration_500

This rule checks the attribute keyword has proper case.

106 Chapter 15. Rules

attribute_specification_rules.html#attribute-specification-500
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

ATTRIBUTE max_delay : time;

Fix

attribute max_delay : time;

15.5.5 attribute_declaration_501

This rule checks the identifier has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

attribute MAX_DELAY : time;

Fix

attribute max_delay : time;

15.5.6 attribute_declaration_502

This rule checks the type_mark has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

attribute max_delay : TIME;

Fix

attribute max_delay : time;

15.6 Attribute Specification Rules

15.6.1 attribute_specification_100

This rule checks for a single space after the following attribute_specification elements: attribute keyword, at-
tribute_designator, of keyword and is keyword.

Violation

15.6. Attribute Specification Rules 107

configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

attribute coordinate of comp_1:component is (0.0, 17.5);

attribute coordinate of comp_1:component is(0.0, 17.5);

Fix

attribute coordinate of comp_1:component is (0.0, 17.5);

attribute coordinate of comp_1:component is (0.0, 17.5);

15.6.2 attribute_specification_101

This rule checks for a single space before the is keyword.

Violation

attribute coordinate of comp_1 : component is (0.0, 17.5);

Fix

attribute coordinate of comp_1 : component is (0.0, 17.5);

attribute coordinate of comp_1 : component is (0.0, 17.5);

15.6.3 attribute_specification_300

This rule checks the indent of the attribute keyword.

Violation

signal sig1 : std_logic;
attribute coordinate of comp_1 : component is (0.0, 17.5);

Fix

signal sig1 : std_logic;
attribute coordinate of comp_1 : component is (0.0, 17.5);

15.6.4 attribute_specification_500

This rule checks the attribute keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

ATTRIBUTE coordinate of comp_1 : component is (0.0, 17.5);

Fix

108 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

attribute coordinate of comp_1 : component is (0.0, 17.5);

15.6.5 attribute_specification_501

This rule checks the attribute_designator has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

attribute COORDINATE of comp_1 : component is (0.0, 17.5);

Fix

attribute coordinate of comp_1 : component is (0.0, 17.5);

15.6.6 attribute_specification_502

This rule checks the of keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

attribute coordinate OF comp_1 : component is (0.0, 17.5);

Fix

attribute coordinate of comp_1 : component is (0.0, 17.5);

15.6.7 attribute_specification_503

This rule checks the is keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

attribute coordinate of comp_1 : component IS (0.0, 17.5);

Fix

attribute coordinate of comp_1 : component is (0.0, 17.5);

15.6. Attribute Specification Rules 109

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.7 Block Rules

15.7.1 block_001

This rule checks the block label and the block keyword are on the same line. Keeping the label and generate on the
same line reduces excessive indenting.

Violation

block_label :
block is

Fix

block_label : block is

15.7.2 block_002

This rule checks for the existence of the is keyword.

Refer to the section Configuring Optional Items for options.

Violation

block_label : block
block_label : block (guard_condition)

Fix

block_label : block is
block_label : block (guard_condition) is

15.7.3 block_003

This rule checks the is keyword is on the same line as the block keyword.

Violation

block_label : block
is

Fix

block_labeel : block is

110 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.7.4 block_004

This rule checks the begin keyword is on it’s own line.

Violation

block is begin

Fix

block is
begin

15.7.5 block_005

This rule checks for code after the begin keyword.

Violation

begin a <= b;

Fix

begin
a <= b;

15.7.6 block_006

This rule checks the end keyword is on it’s own line.

Violation

a <= b; end block;

Fix

a <= b;
end block;

15.7.7 block_007

This rule checks the block label exists in the closing of the block statement.

Refer to the section Configuring Optional Items for options.

Violation

15.7. Block Rules 111

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-optional-items

vhdl-style-guide Documentation, Release 3.2.0

end block;

Fix

end block block_label;

15.7.8 block_100

This rule checks for a single space between the following block elements: label, label colon, block keyword, guard
open parenthesis, guart close parenthesis, and is keywords.

Violation

block_label : block (guard_condition) is
block_label : block is

Fix

block_label : block (guard_condition) is
block_label : block is

15.7.9 block_101

This rule checks for a single space between the end and block keywords and label.

Violation

end block block_label;

Fix

end block block_label;

15.7.10 block_200

This rule checks for blank lines or comments above the block label.

Refer to Configuring Previous Line Rules for options.

Violation

a <= b;
block_label : block is

Fix

a <= b;

block_label : block is

112 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules

vhdl-style-guide Documentation, Release 3.2.0

15.7.11 block_201

This rule checks for a blank line below the block keyword.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

block_label : block is
constant width : integer := 32;

Fix

block_label : block is

constant width : integer := 32;

15.7.12 block_202

This rule checks for blank lines or comments above the begin keyword.

Refer to Configuring Blank Lines for options.

Violation

block_label block is

constant width : integer := 32;
begin

Fix

block_label block is

constant width : integer := 32;

begin

15.7.13 block_203

This rule checks for a blank line below the begin keyword.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

begin
a <= b;

Fix

15.7. Block Rules 113

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines

vhdl-style-guide Documentation, Release 3.2.0

begin

a <= b;

15.7.14 block_204

This rule checks for blank lines or comments above the end keyword.

Refer to Configuring Blank Lines for options.

Violation

begin

a <= b;
end block block_label;

Fix

begin

a <= b;

end block block_label;

15.7.15 block_205

This rule checks for a blank line below the semicolon.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

end block block_label;
a <= b;

Fix

end block block_label;

a <= b;

15.7.16 block_300

This rule checks the indent of the block label.

Violation

114 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

a <= b;

block_label : block is

Fix

a <= b;

block_label : block is

15.7.17 block_301

This rule checks the indent of the begin keyword.

Violation

block_label : block is

begin

Fix

block_label : block is

begin

15.7.18 block_302

This rule checks the indent of the end keyword.

Violation

block_label : block is

begin

end block block_label;

Fix

block_label : block is

begin

end block block_label;

15.7.19 block_400

This rule checks the identifiers for all declarations are aligned in the block declarative region.

15.7. Block Rules 115

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Refer to the section Configuring Identifier Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
constant c_period : time;

Fix

variable var1 : natural;
constant c_period : time;

15.7.20 block_401

This rule checks the colons are in the same column for all declarations in the block declarative part. Refer to the
section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

signal sig1: natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

Fix

signal sig1 : natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

15.7.21 block_500

This rule checks the label has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

BLOCK_LABEL : block is

Fix

block_label : block is

15.7.22 block_501

This rule checks the block keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

116 Chapter 15. Rules

configuring.html#configuring-identifier-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

Violation

block_label : BLOCK is

Fix

block_label : block is

15.7.23 block_502

This rule checks the is keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

block_label : block IS

Fix

block_label : block is

15.7.24 block_503

This rule checks the begin keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

block_label : block is
BEGIN

Fix

block_label : block is
begin

15.7.25 block_504

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

END block block_label;

Fix

15.7. Block Rules 117

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

end block block_label;

15.7.26 block_505

This rule checks the block keyword in the end block has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end BLOCK block_label;

Fix

end block block_label;

15.7.27 block_506

This rule checks the label has proper case on the end block declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end block BLOCK_LABEL;

Fix

end block block_label;

15.7.28 block_600

This rule checks for valid suffixes on block labels. The default suffix is _blk.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

block_label : block is

Fix

block_label_blk : block is

118 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules

vhdl-style-guide Documentation, Release 3.2.0

15.7.29 block_601

This rule checks for valid prefixes on block labels. The default prefix is blk_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

block_label : block is

Fix

blk_block_label : block is

15.8 Block Comment Rules

Note: All examples in this section are using the following options:

• header_left = ‘+’

• header_left_repeat = ‘-’

• header_string = ‘[Header]’

• header_right_repeat = ‘=’

• comment_left = ‘|’

• footer_left = ‘+’

• footer_left_repeat = ‘-’

• footer_string = ‘[Footer]’

• footer_right_repeat = ‘=’

• min_height = 3

• header_alignment = ‘center’

• max_header_column = 40

• footer_alignment = ‘right’

• max_footer_column = 40

15.8.1 block_comment_001

This rule checks the block comment header is correct.

Refer to the section Configuring Block Comments for additional information.

Violation

15.8. Block Comment Rules 119

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-block-comments

vhdl-style-guide Documentation, Release 3.2.0

--
-- Comment
-- Comment
--

Fix

--+-------------[Header]==============
-- Comment
-- Comment
--

15.8.2 block_comment_002

This rule checks the comment_left attribute exists for all comments.

Refer to the section Configuring Block Comments for additional information.

Violation

--+-------------[Header]==============
-- Comment
-- Comment
--

Fix

--+-------------[Header]==============
--| Comment
--| Comment
--

15.8.3 block_comment_003

This rule checks the block comment footer is correct.

Refer to the section Configuring Block Comments for additional information.

Violation

--+-------------[Header]==============
--| Comment
--| Comment
--

Fix

--+-------------[Header]==============
--| Comment
--| Comment
--+--------------------------[Footer]=

120 Chapter 15. Rules

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-block-comments
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-block-comments

vhdl-style-guide Documentation, Release 3.2.0

15.9 Case Rules

15.9.1 case_001

This rule checks the indent of case, when, and end case keywords.

Violation

case data is

when 0 =>
when 1 =>

when 3 =>

end case;

Fix

case data is

when 0 =>
when 1 =>
when 3 =>

end case;

15.9.2 case_002

This rule checks for a single space after the case keyword.

Violation

case data is

Fix

case data is

15.9.3 case_003

This rule checks for a single space before the is keyword.

Violation

case data is

Fix

case data is

15.9. Case Rules 121

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.9.4 case_004

This rule checks for a single space after the when keyword.

Violation

case data is

when 3 =>

Fix

case data is

when 3 =>

15.9.5 case_005

This rule checks for a single space before the => operator.

Violation

case data is

when 3 =>

Fix

case data is

when 3 =>

15.9.6 case_006

This rule checks for a single space between the end and case keywords.

Violation

case data is

end case;

Fix

case data is

end case;

122 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.9.7 case_007

This rule checks for blank lines or comments above the case keyword.

Refer to Configuring Previous Line Rules for options.

The default style is no_code.

Violation

a <= '1';
case data is

-- This is a comment
case data is

Fix

a <= '1';

case data is

-- This is a comment
case data is

15.9.8 case_008

This rule checks for a blank line below the is keyword.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

case data is
when 0 =>

Fix

case data is

when 0 =>

15.9.9 case_009

This rule checks for blank lines or comments above the end keyword.

Refer to Configuring Blank Lines for options.

Violation

15.9. Case Rules 123

phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines

vhdl-style-guide Documentation, Release 3.2.0

when others =>
null;

end case;

Fix

when others =>
null;

end case;

15.9.10 case_010

This rule checks for a blank line below the end case keywords.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

end case;
a <= '1';

Fix

end case;

a <= '1';

15.9.11 case_011

This rule checks the alignment of multiline when statements.

Violation

case data is

when 0 | 1 | 2 | 3
4 | 5 | 7 =>

Fix

case data is

when 0 | 1 | 2 | 3
4 | 5 | 7 =>

15.9.12 case_012

This rule checks for code after the => operator.

124 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Violation

when 0 => a <= '1';

Fix

when 0 =>
a <= '1';

15.9.13 case_013

This rule checks the indent of the null keyword.

Violation

when others =>
null;

when others =>
null;

Fix

when others =>
null;

when others =>
null;

15.9.14 case_014

This rule checks the case keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

CASE address is

Case address is

case address is

Fix

case address is

case address is

case address is

15.9. Case Rules 125

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.9.15 case_015

This rule checks the is keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

case address IS

case address Is

case address iS

Fix

case address is

case address is

case address is

15.9.16 case_016

This rule checks the when has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

WHEN a =>
When b =>
when c =>

Fix

when a =>
when b =>
when c =>

15.9.17 case_017

This rule checks the end keyword in the end case has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

End case;
END case;
end case;

126 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

Fix

end case;
end case;
end case;

15.9.18 case_018

This rule checks the case keyword has proper case in the end case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end CASE;
end CAse;
end case;

Fix

end case;
end case;
end case;

15.9.19 case_019

This rule checks for labels before the case keyword. The label should be removed. The preference is to have comments
above the case statement.

Violation

CASE_LABEL : case address is
CASE_LABEL: case address is
case address is

Fix

case address is
case address is
case address is

15.9.20 case_020

This rule checks for labels after the end case keywords. The label should be removed. The preference is to have
comments above the case statement.

Violation

end case CASE_LABEL;
end case;

15.9. Case Rules 127

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Fix

end case;
end case;

15.9.21 case_021

This rule aligns consecutive comment only lines above a when keyword in a case statement with the when keyword.

Violation

-- comment 1
-- comment 2

-- comment 3
when wr_en =>
rd_en <= '0';

Fix

-- comment 1
-- comment 2
-- comment 3
when wr_en =>

rd_en <= '0';

15.10 Comment Rules

15.10.1 comment_004

This rule checks for at least a single space before inline comments.

Violation

wr_en <= '1';--Write data
rd_en <= '1'; -- Read data

Fix

wr_en <= '1'; --Write data
rd_en <= '1'; -- Read data

15.10.2 comment_010

This rule checks the indent lines starting with comments.

Violation

128 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

-- Libraries
libary ieee;

-- Define architecture
architecture rtl of fifo is

-- Define signals
signal wr_en : std_logic;
signal rd_en : std_Logic;

begin

Fix

-- Libraries
libary ieee;

-- Define architecture
architecture rtl of fifo is

-- Define signals
signal wr_en : std_logic;
signal rd_en : std_Logic;

begin

15.10.3 comment_011

This rule checks for in-line comments and moves them to the line above.

Note: This rule is disabled by default.

Violation

a <= b; -- Assign signal

Fix

-- Assign signal
a <= b;

15.11 Component Rules

15.11.1 component_001

This rule checks the indentation of the component keyword.

Violation

15.11. Component Rules 129

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

architecture rtl of fifo is
begin

component fifo is

component ram is

Fix

architecture rtl of fifo is
begin

component fifo is

component ram is

15.11.2 component_002

This rule checks for a single space after the component keyword.

Violation

component fifo is

Fix

component fifo is

15.11.3 component_003

This rule checks for blank lines or comments above the component declaration.

Refer to Configuring Previous Line Rules for options.

The default style is no_code.

Violation

end component fifo;
component ram is

Fix

end component fifo;

component ram is

15.11.4 component_004

130 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

This rule checks the component keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

COMPONENT fifo is

Component fifo is

Fix

component fifo is

component fifo is

15.11.5 component_005

This rule checks the is keyword is on the same line as the component keyword.

Violation

component fifo

component fifo
is

Fix

component fifo is

component fifo is

15.11.6 component_006

This rule checks the is keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

component fifo IS

component fifo Is

Fix

component fifo is

component fifo is

15.11. Component Rules 131

configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.11.7 component_007

This rule checks for a single space before the is keyword.

Violation

component fifo is

Fix

component fifo is

15.11.8 component_008

This rule checks the component name has proper case in the component declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

component FIFO is

Fix

component fifo is

15.11.9 component_009

This rule checks the indent of the end component keywords.

Violation

overflow : std_logic
);

end component fifo;

Fix

overflow : std_logic
);

end component fifo;

15.11.10 component_010

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

132 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

END component fifo;

Fix

end component fifo;

15.11.11 component_011

This rule checks for single space after the end keyword.

Violation

end component fifo;

Fix

end component fifo;

15.11.12 component_012

This rule checks the proper case of the component name in the end component line.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end component FIFO;

Fix

end component fifo;

15.11.13 component_013

This rule checks for a single space after the component keyword in the end component line.

Violation

end component fifo;

Fix

end component fifo;

15.11. Component Rules 133

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.11.14 component_014

This rule checks the component keyword in the end component line has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end COMPONENT fifo;

Fix

end component fifo;

15.11.15 component_015

This rule has been depricated. The component keyword is required per the LRM.

15.11.16 component_016

This rule checks for blank lines above the end component line.

Violation

overflow : std_logic
);

end component fifo;

Fix

overflow : std_logic
);

end component fifo;

15.11.17 component_017

This rule checks the alignment of the colon for each generic and port in the component declaration.

Following extra configurations are supported:

• separate_generic_port_alignment.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

134 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

component my_component
generic (

g_width : positive;
g_output_delay : positive

);
port (

clk_i : in std_logic;
data_i : in std_logic;
data_o : in std_logic

);
end component;

Fix

component my_component
generic (

g_width : positive;
g_output_delay : positive

);
port (

clk_i : in std_logic;
data_i : in std_logic;
data_o : in std_logic

);
end component;

15.11.18 component_018

This rule checks for a blank line below the end component line.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

end component fifo;
signal rd_en : std_logic;

Fix

end component fifo;

signal rd_en : std_logic;

15.11.19 component_019

This rule checks for comments at the end of the port and generic clauses in component declarations. These comments
represent additional maintainence. They will be out of sync with the entity at some point. Refer to the entity for port
types, port directions and purpose.

Violation

15.11. Component Rules 135

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

wr_en : in std_logic; -- Enables write to RAM
rd_en : out std_logic; -- Enable reads from RAM

Fix

wr_en : in std_logic;
rd_en : out std_logic;

15.11.20 component_020

This rule checks for alignment of inline comments in the component declaration.

Following extra configurations are supported:

• separate_generic_port_alignment.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

component my_component
generic (

g_width : positive; -- Data width
g_output_delay : positive -- Delay at output

);
port (

clk_i : in std_logic; -- Input clock
data_i : in std_logic; -- Data input
data_o : in std_logic -- Data output

);
end my_component;

Fix

component my_component
generic (

g_width : positive; -- Data width
g_output_delay : positive -- Delay at output

);
port (

clk_i : in std_logic; -- Input clock
data_i : in std_logic; -- Data input
data_o : in std_logic -- Data output

);
end my_component;

15.11.21 component_021

This rule inserts the optional is keyword if it does not exist.

Refer to the section Configuring Optional Items for options.

Violation

136 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-optional-items

vhdl-style-guide Documentation, Release 3.2.0

component my_component

end my_component;

Fix

component my_component is

end my_component;

15.12 Concurrent Rules

15.12.1 concurrent_001

This rule checks the indent of concurrent assignments.

Violation

architecture RTL of FIFO is
begin

wr_en <= '0';
rd_en <= '1';

Fix

architecture RTL of FIFO is
begin

wr_en <= '0';
rd_en <= '1';

15.12.2 concurrent_002

This rule checks for a single space after the <= operator.

Violation

wr_en <= '0';
rd_en <= '1';

Fix

wr_en <= '0';
rd_en <= '1';

15.12.3 concurrent_003

15.12. Concurrent Rules 137

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

This rule checks alignment of multiline concurrent simple signal assignments. Succesive lines should align to the
space after the assignment operator. However, there is a special case if there are parenthesis in the assignment. If
the parenthesis are not closed on the same line, then the next line will be aligned to the parenthesis. Aligning to the
parenthesis improves readability.

Violation

O_FOO <= (1 => q_foo(63 downto 32),
0 => q_foo(31 downto 0));

n_foo <= resize(unsigned(I_FOO) +
unsigned(I_BAR), q_foo'length);

Fix

O_FOO <= (1 => q_foo(63 downto 32),
0 => q_foo(31 downto 0));

n_foo <= resize(unsigned(I_FOO) +
unsigned(I_BAR), q_foo'length);

15.12.4 concurrent_004

This rule checks for at least a single space before the <= operator.

Violation

wr_en<= '0';

Fix

wr_en <= '0';

15.12.5 concurrent_005

This rule checks for labels on concurrent assignments. Labels on concurrents are optional and do not provide additional
information.

Violation

WR_EN_OUTPUT : WR_EN <= q_wr_en;
RD_EN_OUTPUT : RD_EN <= q_rd_en;

Fix

WR_EN <= q_wr_en;
RD_EN <= q_rd_en;

15.12.6 concurrent_006

138 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

This rule checks the alignment of the <= operator over multiple consecutive lines. Refer to the section Configuring
Keyword Alignment Rules for information on changing the configurations.

Violation

wr_en <= '0';
rd_en <= '1';
data <= (others => '0');

Fix

wr_en <= '0';
rd_en <= '1';
data <= (others => '0');

15.12.7 concurrent_007

This rule checks for code after the else keyword.

Note: There is a configuration option allow_single_line which allows single line concurrent statements.

allow_single_line set to False (Default)

Violation

wr_en <= '0' when overflow = '0' else '1';
wr_en <= '0' when overflow = '0' else '1' when underflow = '1' else sig_a;

Fix

wr_en <= '0' when overflow = '0' else
'1';

wr_en <= '0' when overflow = '0' else
'1' when underflow = '1' else
sig_a;

allow_single_line set to True

Violation

wr_en <= '0' when overflow = '0' else '1';
wr_en <= '0' when overflow = '0' else '1' when underflow = '1' else sig_a;

Fix

wr_en <= '0' when overflow = '0' else '1';
wr_en <= '0' when overflow = '0' else

'1' when underflow = '1' else
sig_a;

15.12. Concurrent Rules 139

configuring.html#configuring-keyword-alignment-rules
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.12.8 concurrent_008

This rule checks the alignment of inline comments in consecutive concurrent statements. Refer to the section Config-
uring Keyword Alignment Rules for information on changing the configurations.

Violation

wr_en <= '0'; -- Write enable
rd_en <= '1'; -- Read enable
data <= (others => '0'); -- Write data

Fix

wr_en <= '0'; -- Write enable
rd_en <= '1'; -- Read enable
data <= (others => '0'); -- Write data

15.12.9 concurrent_009

This rule checks alignment of multiline concurrent conditional signal statements.

Refer to the section Configuring Concurrent Alignment Rules for information on formatting options.

Violation

wr_en <= '0' when q_wr_en = '1' else
'1';

w_foo <= I_FOO when ((I_BAR = '1') and
(I_CRUFT = '1')) else
'0';

Fix

wr_en <= '0' when q_wr_en = '1' else
'1';

w_foo <= I_FOO when ((I_BAR = '1') and
(I_CRUFT = '1')) else

'0';

15.12.10 concurrent_010

This rule removes blank lines within concurrent signal assignments.

Violation

wr_en <= '0' when q_wr_en = '1' else

'1';

(continues on next page)

140 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-concurrent-alignment-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

w_foo <= I_FOO when ((I_BAR = '1') and

(I_CRUFT = '1')) else

'0';

Fix

wr_en <= '0' when q_wr_en = '1' else
'1';

w_foo <= I_FOO when ((I_BAR = '1') and
(I_CRUFT = '1')) else

'0';

15.12.11 concurrent_011

This rule checks the structure of simple and conditional concurrent statements.

Refer to the section Configuring Concurrent Structure Rules for information on formatting options.

Violation

wr_en <=
'0' when q_wr_en = '1' else

'1';

w_foo <=
I_FOO when ((I_BAR = '1') and

(I_CRUFT = '1')) else
'0';

Fix

wr_en <= '0' when q_wr_en = '1' else
'1';

w_foo <= I_FOO when ((I_BAR = '1') and
(I_CRUFT = '1')) else

'0';

15.13 Constant Rules

15.13.1 constant_001

This rule checks the indent of a constant declaration.

Violation

15.13. Constant Rules 141

phases.html
rule_severity.html
configuring.html#configuring-concurrent-structure-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

architecture RTL of FIFO is

constant size : integer := 1;
constant width : integer := 32

Fix

architecture RTL of FIFO is

constant size : integer := 1;
constant width : integer := 32

15.13.2 constant_002

This rule checks the constant keyword is has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

CONSTANT size : integer := 1;

Fix

constant size : integer := 1;

15.13.3 constant_003

This rule was depricated and replaced with rules: function_015, package_019, procedure_010, architecture_029 and
process_037.

15.13.4 constant_004

This rule checks the constant identifier has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

constant SIZE : integer := 1;

Fix

constant size : integer := 1;

15.13.5 constant_005

This rule checks for a single space after the colon.

142 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Violation

constant size :integer := 1;
constant wdith : integer := 32;

Fix

constant size : integer := 1;
constant width : integer := 32;

15.13.6 constant_006

This rule checks for at least a single space before the colon.

Violation

constant size: integer := 1;
constant width : integer := 32;

Fix

constant size : integer := 1;
constant width : integer := 32;

15.13.7 constant_007

This rule checks the := is on the same line at the constant keyword.

Violation

constant size : integer
:= 1;

Fix

constant size : integer := 1;

Fix

constant size : integer := 1;
constant width : integer := 32

15.13.8 constant_010

This rule checks for a single space before the := keyword in constant declarations. Having a space makes it clearer
where the assignment occurs on the line.

Violation

15.13. Constant Rules 143

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

constant size : integer:= 1;
constant width : integer := 10;

Fix

constant size : integer := 1;
constant width : integer := 10;

15.13.9 constant_011

This rule checks the constant type has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

constant size : INTEGER := 1;

Fix

constant size : integer := 1;

15.13.10 constant_012

This rule checks the alignment of multiline constants that contain arrays.

Refer to section Configuring Multiline Indent Rules for options.

Note: The structure of multiline array constants is handled by the rule constant_016.

Violation

constant rom : romq_type :=
(

0,
65535,
32768

);

Fix

constant rom : romq_type :=
(

0,
65535,
32768

);

144 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-multiline-indent-rules
constant_rules.html#constant-016

vhdl-style-guide Documentation, Release 3.2.0

15.13.11 constant_013

This rule checks for consistent capitalization of constant names.

Violation

architecture RTL of ENTITY1 is

constant c_size : integer := 5;
constant c_ones : std_logic_vector(c_size - 1 downto 0) := (others => '1');
constant c_zeros : std_logic_vector(c_size - 1 downto 0) := (others => '0');

signal data : std_logic_vector(c_size - 1 downto 0);

begin

data <= C_ONES;

PROC_NAME : process () is
begin

data <= C_ones;

if (sig2 = '0') then
data <= c_Zeros;

end if;

end process PROC_NAME;

end architecture RTL;

Fix

architecture RTL of ENTITY1 is

constant c_size : integer := 5;
constant c_ones : std_logic_vector(c_size - 1 downto 0) := (others => '1');
constant c_zeros : std_logic_vector(c_size - 1 downto 0) := (others => '0');

signal data : std_logic_vector(c_size - 1 downto 0);

begin

data <= c_ones;

PROC_NAME : process () is
begin

data <= c_ones;

if (sig2 = '0') then
data <= c_zeros;

end if;

end process PROC_NAME;

end architecture RTL;

15.13. Constant Rules 145

phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.13.12 constant_014

This rule checks the indent of multiline constants that do not contain arrays.

Violation

constant width : integer := a + b +
c + d;

Fix

constant width : integer := a + b +
c + d;

15.13.13 constant_015

This rule checks for valid prefixes on constant identifiers. The default constant prefix is c_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

constant my_const : integer;

Fix

constant c_my_const : integer;

15.13.14 constant_016

This rule checks the structure of multiline constants that contain arrays.

Refer to section Configuring Multiline Structure Rules for options.

Note: The indenting of multiline array constants is handled by the rule constant_012.

Violation

constant rom : romq_type := (0, 65535, 32768);

Fix

constant rom : romq_type :=
(

0,
65535,
32768

);

146 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
configuring.html#configuring-multiline-structure-rules
constant_rules.html#constant-012

vhdl-style-guide Documentation, Release 3.2.0

15.13.15 constant_600

This rule checks for valid suffixes on constant identifiers. The default constant suffix is _c.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

constant my_const : integer;

Fix

constant my_const_c : integer;

15.14 Context Rules

15.14.1 context_001

This rule checks the indent of the context keyword.

Violation

context c1 is

library ieee;

Fix

context c1 is

library ieee;

15.14.2 context_002

This rule checks for a single space between the context keyword and the context identifier.

Violation

context c1 is

Fix

context c1 is

15.14.3 context_003

This rule checks for blank lines or comments above the context keyword.

15.14. Context Rules 147

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Refer to Configuring Previous Line Rules for options.

The default style is no_code.

Violation

library ieee;
context c1 is

--Some Comment
context c1 is

Fix

library ieee;

context c1 is

--Some Comment
context c1 is

15.14.4 context_004

This rule checks the context keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

CONTEXT c1 is

Fix

context c1 is

15.14.5 context_005

This rule checks the context identifier is on the same line as the context keyword.

Violation

context
c1

is

Fix

context c1
is

148 Chapter 15. Rules

configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.14.6 context_006

This rule checks the is keyword is on the same line as the context identifier.

Violation

context c1
is

Fix

context c1 is

15.14.7 context_007

This rule checks for code after the is keyword.

Violation

context c1 is -- Comments are allowed

context c1 is library ieee; -- This is not allowed

Fix

context c1 is -- Comments are allowed

context c1 is
library ieee; -- This is not allowed

15.14.8 context_008

This rule checks the end keyword is on it’s own line.

Violation

context c1 is library ieee; end context c1;

context c1 is library ieee; end;

Fix

context c1 is library ieee;
end context c1;

context c1 is library ieee;
end;

15.14. Context Rules 149

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.14.9 context_009

This rule checks the context keyword is on the same line as the end context keyword.

Violation

end
context c1;

Fix

end context
c1;

15.14.10 context_010

This rule checks the context identifier is on the same line as the end context keyword.

Violation

end context
c1;

Fix

end context c1;

15.14.11 context_011

This rule checks the semicolon is on the same line as the end keyword.

Violation

end
;

end context
;

end context c1
;

Fix

end;

end context;

end context c1;

150 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.14.12 context_012

This rule checks the context identifier has proper case in the context declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

context C1 is

Fix

context c1 is

15.14.13 context_013

This rule checks the is keyword has proper case in the context declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

context c1 IS

Fix

context c1 is

15.14.14 context_014

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

End;

END context;

Fix

end;

end context;

15.14.15 context_015

This rule checks the context keyword has proper case in the end context declaration.

15.14. Context Rules 151

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end CONTEXT;

Fix

end context;

15.14.16 context_016

This rule checks the context identifier has proper case in the end context declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end context C1;

Fix

end context c1;

15.14.17 context_017

This rule checks for a single space between the context identifier and the is keyword.

Violation

context c1 is

Fix

context c1 is

15.14.18 context_018

This rule checks for a single space between the end keyword and the context keyword.

Violation

end;

end context;

Fix

152 Chapter 15. Rules

configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

end;

end context;

15.14.19 context_019

This rule checks for a single space between the context keyword and the context identifier.

Violation

end context;

end context c1;

Fix

end context;

end context c1;

15.14.20 context_020

This rule checks the indent of the end keyword.

Violation

context c1 is
end context c1;

Fix

context c1 is
end context c1;

15.14.21 context_021

This rule checks for the keyword context in the end context statement.

Refer to the section Configuring Optional Items for options.

Violation

end c1;

end;

Fix

15.14. Context Rules 153

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-optional-items

vhdl-style-guide Documentation, Release 3.2.0

end context c1;

end context;

15.14.22 context_022

This rule checks for the context name in the end context statement.

Refer to the section Configuring Optional Items for options.

Violation

end context;

Fix

end context c1;

15.14.23 context_023

This rule adds a blank line below the is keyword.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

context c1 is
library IEEE;

Fix

context c1 is

library IEEE;

15.14.24 context_024

This rule checks for blank lines or comments above the end keyword.

Refer to Configuring Previous Line Rules for options.

The default style is no_code.

Violation

use ieee.std_logic_1164.all;
end context;

Fix

154 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules

vhdl-style-guide Documentation, Release 3.2.0

use ieee.std_logic_1164.all;

end context;

15.14.25 context_025

This rule adds a blank line below the context semicolon.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

end context;
entity fifo is

Fix

end context;

entity fifo is

15.14.26 context_026

This rule ensures a single blank line after the context keword.

Violation

context c1 is

library ieee;

Fix

context c1 is

library ieee;

15.14.27 context_027

This rule ensures a single blank line before the end keword.

Violation

use ieee.std_logic_1164.all;

(continues on next page)

15.14. Context Rules 155

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

end context;

Fix

use ieee.std_logic_1164.all;

end context;

15.14.28 context_028

Note: This rule has not been implemented yet.

This rule checks for alignment of inline comments in the context declaration.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

context c1 is -- Some comment
library ieee; -- Other comment
use ieee.std_logic_1164.all; -- Comment 3

end context c1; -- Comment 4

Fix

context c1 is -- Some comment
library ieee; -- Other comment
use ieee.std_logic_1164.all; -- Comment 3

end context c1; -- Comment 4

15.15 Context Reference Rules

15.15.1 context_ref_001

This rule checks the indent of the context keyword.

Violation

library ieee;
context c1;

Fix

library ieee;
context c1;

156 Chapter 15. Rules

configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.15.2 context_ref_002

This rule checks for a single space between the context keyword and the context selected name.

Violation

context c1;

Fix

context c1;

15.15.3 context_ref_003

This rule checks the context keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

CONTEXT c1;

Fix

context c1;

15.15.4 context_ref_004

This rule checks the context selected names have proper case in the context reference.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

context C1;

context CON1, Con2;

Fix

context c1;

context con1, con2;

15.15.5 context_ref_005

This rule checks the context keyword is on it’s own line.

Violation

15.15. Context Reference Rules 157

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

context c1 is library ieee; context con1; end context c1;

library ieee; context con2;

Fix

context c1 is library ieee;
context con1; end context c1;

library ieee;
context con2;

15.15.6 context_ref_006

This rule checks the semicolon is on the same line as the context selected name.

Note: This rule has not been implemented yet.

Violation

context c1
;

context
c1
;

Fix

context c1;

context
c1;

15.15.7 context_ref_007

This rule checks for code after the semicolon.

Note: This rule has not been implemented yet.

Violation

context c1; -- Comments are allowed

context c1; library ieee; -- This is not allowed

Fix

context c1; -- Comments are allowed

context c1;
library ieee; -- This is not allowed

158 Chapter 15. Rules

vhdl-style-guide Documentation, Release 3.2.0

15.15.8 context_ref_008

This rule checks the context selected name is on the same line as the context keyword.

Note: This rule has not been implemented yet.

Violation

context
c1
;

Fix

context c1

;

15.15.9 context_ref_009

This rule checks for multiple selected names in a single reference.

Note: This rule has not been implemented yet.

Violation

context c1, c2, c3; -- Comment 1

context c1,
c2,
c3;

context c1;
context c2;
context c3;

context c1;
context c2;
context c3;

15.16 Entity Rules

15.16.1 entity_001

This rule checks the indent of the entity keyword.

Violation

15.16. Entity Rules 159

phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

library ieee;

entity fifo is

Fix

library ieee;

entity fifo is

15.16.2 entity_002

This rule checks for a single space after the entity keyword.

Violation

entity fifo is

Fix

entity fifo is

15.16.3 entity_003

This rule checks for blank lines or comments above the entity keyword.

Refer to the section Configuring Previous Line Rules for options.

Violation

library ieee;
entity fifo is

Fix

library ieee;

entity fifo is

15.16.4 entity_004

This rule checks the entity keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

ENTITY fifo is

Fix

160 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

entity fifo is

15.16.5 entity_005

This rule checks the is keyword is on the same line as the entity keyword.

Violation

entity fifo

entity fifo
is

Fix

entity fifo is

entity fifo is

15.16.6 entity_006

This rule checks the is keyword has proper case in the entity declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

entity fifo IS

Fix

entity fifo is

15.16.7 entity_007

This rule checks for a single space before the is keyword.

Violation

entity fifo is

Fix

entity fifo is

15.16. Entity Rules 161

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.16.8 entity_008

This rule checks the entity name has proper case in the entity declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

entity Fifo is

Fix

entity fifo is

15.16.9 entity_009

This rule checks the indent of the end keyword.

Violation

wr_en : in std_logic;
rd_en : in std_logic

);
end entity fifo;

Fix

wr_en : in std_logic;
rd_en : in std_logic

);
end entity fifo;

15.16.10 entity_010

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

END entity fifo;

Fix

end entity fifo;

15.16.11 entity_011

This rule checks for a single space after the end keyword.

162 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Violation

end entity fifo;

Fix

end entity fifo;

15.16.12 entity_012

This rule checks the case of the entity name in the end entity statement.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end entity FIFO;

Fix

end entity fifo;

15.16.13 entity_013

This rule checks for a single space after the entity keyword in the closing of the entity declaration.

Violation

end entity fifo;

Fix

end entity fifo;

15.16.14 entity_014

This rule checks the entity keyword has proper case in the closing of the entity declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end ENTITY fifo;

Fix

end entity fifo;

15.16. Entity Rules 163

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.16.15 entity_015

This rule checks for the keyword entity in the end entity statement.

Refer to the section Configuring Optional Items for options.

Violation

end fifo;

end;

Fix

end entity fifo;

end entity;

15.16.16 entity_016

This rule checks for blank lines above the end entity keywords.

Violation

wr_en : in std_logic;
rd_en : in std_logic

);

end entity fifo;

Fix

wr_en : in std_logic;
rd_en : in std_logic

);
end entity fifo;

15.16.17 entity_017

This rule checks the alignment of the colon for each generic and port in the entity declaration.

Following extra configurations are supported:

• separate_generic_port_alignment.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

164 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

generic (
g_width : positive;
g_output_delay : positive

);
port (

clk_i : in std_logic;
data_i : in std_logic;
data_o : in std_logic

);

Fix

generic (
g_width : positive;
g_output_delay : positive

);
port (

clk_i : in std_logic;
data_i : in std_logic;
data_o : in std_logic

);

15.16.18 entity_018

This rule checks the alignment of := operator for each generic and port in the entity declaration.

Following extra configurations are supported:

• separate_generic_port_alignment.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

generic (
g_width : positive := 8;
g_output_delay : positive := 5

);
port (

clk_i : in std_logic;
data1_i : in std_logic := 'X';
data2_i : in std_logic := 'X';
data_o : in std_logic

);

Fix

generic (
g_width : positive := 8;
g_output_delay : positive := 5

);
port (

clk_i : in std_logic;
data1_i : in std_logic := 'X';
data2_i : in std_logic := 'X';

(continues on next page)

15.16. Entity Rules 165

phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

data_o : in std_logic
);

15.16.19 entity_019

This rule checks for the entity name in the end entity statement.

Refer to the section Configuring Optional Items for options.

Violation

end entity;

Fix

end entity entity_name;

15.16.20 entity_020

This rule checks for alignment of inline comments in the entity declaration.

Following extra configurations are supported:

• separate_generic_port_alignment.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

generic (
g_width : positive; -- Data width
g_output_delay : positive -- Delay at output

);
port (

clk_i : in std_logic; -- Input clock
data_i : in std_logic; -- Data input
data_o : in std_logic -- Data output

);

Fix

generic (
g_width : positive; -- Data width
g_output_delay : positive -- Delay at output

);
port (

clk_i : in std_logic; -- Input clock
data_i : in std_logic; -- Data input
data_o : in std_logic -- Data output

);

166 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

15.16.21 entity_600

This rule checks for consistent capitalization of generic names in entity declarations.

Violation

entity FIFO is
generic (
G_WIDTH : natural := 16

);
port (
I_DATA : std_logic_vector(g_width - 1 downto 0);
O_DATA : std_logic_vector(g_width - 1 downto 0)

);
end entity fifo;

Fix

entity FIFO is
generic (
G_WIDTH : natural := 16

);
port (
I_DATA : std_logic_vector(G_WIDTH - 1 downto 0);
O_DATA : std_logic_vector(G_WIDTH - 1 downto 0)

);
end entity fifo;

15.17 Entity Specification Rules

15.17.1 entity_specification_100

This rule checks for a single space after the colon.

Violation

attribute coordinate of comp_1 :component is (0.0, 17.5);
attribute coordinate of comp_1 : component is (0.0, 17.5);

Fix

attribute coordinate of comp_1 : component is (0.0, 17.5);
attribute coordinate of comp_1 : component is (0.0, 17.5);

15.17.2 entity_specification_101

This rule checks for at least a single space before the colon.

Violation

15.17. Entity Specification Rules 167

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

attribute coordinate of comp_1: component is (0.0, 17.5);

attribute coordinate of comp_1 : component is (0.0, 17.5);

Fix

attribute coordinate of comp_1 : component is (0.0, 17.5);

attribute coordinate of comp_1 : component is (0.0, 17.5);

15.17.3 entity_specification_500

This rule checks the others keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

attribute coordinate of OTHERS : component is (0.0, 17.5);

Fix

attribute coordinate of others : component is (0.0, 17.5);

15.17.4 entity_specification_501

This rule checks the all keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

attribute coordinate of ALL : component is (0.0, 17.5);

Fix

attribute coordinate of all : component is (0.0, 17.5);

15.17.5 entity_specification_502

This rule checks the entity_designator has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

attribute coordinate of COMP_1, COMP_2 : component is (0.0, 17.5);

Fix

168 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

attribute coordinate of comp_1, comp_2 : component is (0.0, 17.5);

15.17.6 entity_specification_503

This rule checks the entity_class has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

attribute coordinate of comp_1 : COMPONENT is (0.0, 17.5);

Fix

attribute coordinate of comp_1 : component is (0.0, 17.5);

15.18 Exit Rules

15.18.1 exit_statement_300

This rule checks the indent of the exit keyword.

Violation

end if;

exit;

Fix

end if;

exit;

15.19 File Rules

15.19.1 file_001

This rule checks the indent of file declarations.

Violation

architecture rtl of fifo is

file defaultImage : load_file_type open read_mode is load_file_name;

(continues on next page)

15.18. Exit Rules 169

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

file defaultImage : load_file_type open read_mode
is load_file_name;

begin

Fix

architecture rtl of fifo is

file defaultImage : load_file_type open read_mode is load_file_name;

file defaultImage : load_file_type open read_mode
is load_file_name;

begin

15.19.2 file_002

This rule checks the file keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

architecture rtl of fifo is

FILE defaultImage : load_file_type open read_mode is load_file_name;

begin

Fix

architecture rtl of fifo is

file defaultImage : load_file_type open read_mode is load_file_name;

begin

15.19.3 file_003

This rule was depricated and replaced with rules:

• function_015

• package_019

• procedure_010

• architecture_029

170 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
function_rules.html#function-015
package_rules.html#package-019
procedure_rules.html#procedure-010
architecture_rules.html#architecture-029

vhdl-style-guide Documentation, Release 3.2.0

15.20 For Loop Rules

15.20.1 for_loop_001

This rule checks the indentation of the for keyword.

Violation

fifo_proc : process () is
begin

for index in 4 to 23 loop

end loop;

end process;

Fix

fifo_proc : process () is
begin

for index in 4 to 23 loop

end loop;

end process;

15.20.2 for_loop_002

This rule checks the indentation of the end loop keywords.

Violation

fifo_proc : process () is
begin

for index in 4 to 23 loop

end loop;

end process;

Fix

fifo_proc : process () is
begin

for index in 4 to 23 loop

end loop;

end process;

15.20. For Loop Rules 171

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.20.3 for_loop_003

This rule checks the proper case of the label on a foor loop.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

LABEL : for index in 4 to 23 loop
Label : for index in 0 to 100 loop

Fix

label : for index in 4 to 23 loop
label : for index in 0 to 100 loop

15.20.4 for_loop_004

This rule checks if a label exists on a for loop that a single space exists between the label and the colon.

Violation

label: for index in 4 to 23 loop
label : for index in 0 to 100 loop

Fix

label : for index in 4 to 23 loop
label : for index in 0 to 100 loop

15.20.5 for_loop_005

This rule checks if a label exists on a for loop that a single space exists after the colon.

Violation

label : for index in 4 to 23 loop
label : for index in 0 to 100 loop

Fix

label : for index in 4 to 23 loop
label : for index in 0 to 100 loop

15.21 Function Rules

15.21.1 function_001

172 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

This rule checks the indentation of the function keyword.

Violation

architecture RTL of FIFO is

function overflow (a: integer) return integer is

function underflow (a: integer) return integer is

begin

Fix

architecture RTL of FIFO is

function overflow (a: integer) return integer is

function underflow (a: integer) return integer is

begin

15.21.2 function_002

This rule checks a single space exists after the function keyword.

Violation

function overflow (a: integer) return integer is

Fix

function overflow (a: integer) return integer is

15.21.3 function_003

This rule checks for a single space between the function name and the (.’

Violation

function overflow (a: integer) return integer is

function underflow(a: integer) return integer is

Fix

function overflow (a: integer) return integer is

function underflow (a: integer) return integer is

15.21. Function Rules 173

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.21.4 function_004

This rule checks the begin keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

function overflow (a: integer) return integer is
BEGIN

Fix

function overflow (a: integer) return integer is
begin

15.21.5 function_005

This rule checks the function keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

FUNCTION overflow (a: integer) return integer is

Fix

function overflow (a: integer) return integer is

15.21.6 function_006

This rule checks for blank lines or comments above the function keyword.

Refer to Configuring Previous Line Rules for options.

Violation

architecture RTL of FIFO is
function overflow (a: integer) return integer is

Fix

architecture RTL of FIFO is

function overflow (a: integer) return integer is

174 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules

vhdl-style-guide Documentation, Release 3.2.0

15.21.7 function_007

This rule checks for a blank line below the end of the function declaration.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

function overflow (a: integer) return integer is
end;
signal wr_en : std_logic;

Fix

function overflow (a: integer) return integer is
end;

signal wr_en : std_logic;

15.21.8 function_008

This rule checks the indent of function parameters on multiple lines.

Violation

function func_1 (a : integer; b : integer;
c : unsigned(3 downto 0);

d : std_logic_vector(7 downto 0);
e : std_logic) return integer is

begin

end;

Fix

function func_1 (a : integer; b : integer;
c : unsigned(3 downto 0);
d : std_logic_vector(7 downto 0);
e : std_logic) return integer is

begin

end;

15.21.9 function_009

This rule checks for a function parameter on the same line as the function keyword when the parameters are on multiple
lines.

Violation

15.21. Function Rules 175

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

function func_1 (a : integer; b : integer;
c : unsigned(3 downto 0);
d : std_logic_vector(7 downto 0);
e : std_logic) return integer is

begin

end;

Fix

function func_1 (
a : integer; b : integer;
c : unsigned(3 downto 0);
d : std_logic_vector(7 downto 0);
e : std_logic) return integer is

begin

end;

15.21.10 function_010

This rule checks for consistent capitalization of function names.

Violation

architecture rtl of fifo is

function func_1 ()

begin

OUT1 <= Func_1;

PROC1 : process () is
begin

sig1 <= FUNC_1;

end process;

end architecture rtl;

Fix

architecture rtl of fifo is

function func_1 ()

begin

OUT1 <= func_1;

PROC1 : process () is
begin

(continues on next page)

176 Chapter 15. Rules

phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

sig1 <= func_1;

end process;

end architecture rtl;

15.21.11 function_012

This rule checks the colons are in the same column for all declarations in the function declarative part.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
variable var2 : natural;
constant c_period : time;

Fix

variable var1 : natural;
variable var2 : natural;
constant c_period : time;

15.21.12 function_013

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

END;

End function foo;

Fix

end;

end function foo;

15.21.13 function_014

This rule checks the function keyword in the end function has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

15.21. Function Rules 177

phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

end FUNCTION;

end Function foo;

Fix

end function;

end function foo;

15.21.14 function_015

This rule checks the identifiers for all declarations are aligned in the function declarative part.

Refer to the section Configuring Identifier Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
signal sig1 : natural;
constant c_period : time;

Fix

variable var1 : natural;
signal sig1 : natural;
constant c_period : time;

15.21.15 function_016

This rule checks the indent of return statements in function bodies.

Violation

function func1 return integer is
begin

return 99;
return 99;
end func1;

Fix

function func1 return integer is
begin

return 99;
return 99;

end func1;

15.21.16 function_017

178 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-identifier-alignment-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

This rule checks the function designator has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

function OVERflow (a: integer) return integer is

Fix

function overflow (a: integer) return integer is

15.22 Generate Rules

15.22.1 generate_001

This rule checks the indent of the generate declaration.

Violation

architecture rtl of fifo is
begin

ram_array : for i in 0 to 7 generate

ram_array : for i in 0 to 7 generate

Fix

architecture rtl of fifo is
begin

ram_array : for i in 0 to 7 generate

ram_array : for i in 0 to 7 generate

15.22.2 generate_002

This rule checks for a single space between the label and the colon.

Violation

ram_array: for i in 0 to 7 generate

Fix

ram_array : for i in 0 to 7 generate

15.22. Generate Rules 179

configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.22.3 generate_003

This rule checks for a blank line below the end generate keywords.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

end generate ram_array;
wr_en <= '1';

Fix

end generate ram_array;

wr_en <= '1';

15.22.4 generate_004

This rule checks for blank lines or comments before the generate label.

Refer to Configuring Previous Line Rules for options.

Violation

wr_en <= '1';
ram_array : for i in 0 to 7 generate

Fix

wr_en <= '1';

ram_array : for i in 0 to 7 generate

15.22.5 generate_005

This rule checks the generate label has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

RAM_ARRAY: for i in 0 to 7 generate

Fix

ram_array: for i in 0 to 7 generate

180 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.22.6 generate_006

This rule checks the indent of the begin keyword.

Violation

ram_array : for i in 0 to 7 generate
begin

Fix

ram_array : for i in 0 to 7 generate
begin

15.22.7 generate_007

This rule checks the indent of the end generate keyword.

Violation

ram_array : for i in 0 to 7 generate
begin

end generate ram_array;

Fix

ram_array : for i in 0 to 7 generate
begin
end generate ram_array;

15.22.8 generate_008

This rule checks for a single space after the end keyword.

Violation

end generate ram_array;

Fix

end generate ram_array;

15.22.9 generate_009

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

15.22. Generate Rules 181

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

END generate ram_array;

Fix

end generate ram_array;

15.22.10 generate_010

This rule checks the generate keyword has the proper case in the end generate line.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end GENERATE ram_array;

Fix

end generate ram_array;

15.22.11 generate_011

This rule checks the end generate line has a label on for generate statements.

Violation

ram_array : for i in 0 to 127 generate

end generate;

Fix

ram_array : for i in 0 to 127 generate

end generate ram_array;

15.22.12 generate_012

This rule checks the end generate label has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end generate RAM_ARRAY;

Fix

182 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

end generate ram_array;

15.22.13 generate_013

This rule checks for a single space after the generate keyword and the label in the end generate keywords.

Violation

end generate ram_array;

Fix

end generate ram_array;

15.22.14 generate_014

This rule checks for a single space between the colon and the for keyword.

Violation

ram_array :for i in 0 to 7 generate
ram_array : for i in 0 to 7 generate

Fix

ram_array : for i in 0 to 7 generate
ram_array : for i in 0 to 7 generate

15.22.15 generate_015

This rule checks the generate label and the generate keyword are on the same line. Keeping the label and generate on
the same line reduces excessive indenting.

Violation

ram_array :
for i in 0 to 7 generate

Fix

ram_array : for i in 0 to 7 generate

15.22.16 generate_016

This rule checks the indent of the when keyword in generate case statements.

15.22. Generate Rules 183

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Violation

GEN_LABEL : case condition generate
when 0 =>
when 1 =>

when 2 =>

Fix

GEN_LABEL : case condition generate
when 0 =>
when 1 =>
when 2 =>

15.22.17 generate_017

This rule checks for valid prefixes on generate statement labels. The default prefix is gen_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

label : case condition generate

Fix

gen_label : case condition generate

15.22.18 generate_018

This rule checks the indent of the end keyword in the generate statement body.

Violation

ram_array : for i in 0 to 7 generate
begin

end;
end generate;

Fix

ram_array : for i in 0 to 7 generate
begin
end;
end generate;

15.22.19 generate_400

This rule checks the identifiers for all declarations are aligned in the generate declarative part in for generate statements.

184 Chapter 15. Rules

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Refer to the section Configuring Identifier Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
constant c_period : time;

Fix

variable var1 : natural;
constant c_period : time;

15.22.20 generate_401

This rule checks the colons are in the same column for all declarations in the generate declarative part in for generate
statements.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

signal sig1: natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

Fix

signal sig1 : natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

15.22.21 generate_402

This rule checks the identifiers for all declarations are aligned in the generate declarative part in if generate statements.

Refer to the section Configuring Identifier Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
constant c_period : time;

Fix

variable var1 : natural;
constant c_period : time;

15.22. Generate Rules 185

configuring.html#configuring-identifier-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-identifier-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

15.22.22 generate_403

This rule checks the colons are in the same column for all declarations in the generate declarative part in if generate
statements.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

signal sig1: natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

Fix

signal sig1 : natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

15.22.23 generate_404

This rule checks the identifiers for all declarations are aligned in the generate declarative part in case generate state-
ments.

Refer to the section Configuring Identifier Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
constant c_period : time;

Fix

variable var1 : natural;
constant c_period : time;

15.22.24 generate_405

This rule checks the colons are in the same column for all declarations in the generate declarative part in case generate
statements.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

signal sig1: natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

186 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-identifier-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

Fix

signal sig1 : natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

15.22.25 generate_600

This rule checks for valid suffixes on generate statement labels. The default suffix is _gen.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

label : case condition generate

Fix

label_gen : case condition generate

15.23 Generic Rules

15.23.1 generic_001

This rule checks for blank lines above the generic keyword.

Violation

entity fifo is

generic (

Fix

entity fifo is
generic (

15.23.2 generic_002

This rule checks the indent of the generic keyword.

Violation

15.23. Generic Rules 187

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

entity fifo is
generic (

entity fifo is
generic (

Fix

entity fifo is
generic (

entity fifo is
generic (

15.23.3 generic_003

This rule checks for a single space between the generic keyword and the (.

Violation

generic (

generic(

Fix

generic (

generic (

15.23.4 generic_004

This rule checks the indent of generic declarations.

Violation

generic (
g_width : integer := 32;

g_depth : integer := 512
)

Fix

generic (
g_width : integer := 32;
g_depth : integer := 512

)

188 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.23.5 generic_005

This rule checks for a single space after the colon in a generic declaration.

Violation

g_width :integer := 32;

Fix

g_width : integer := 32;

15.23.6 generic_006

This rule checks for a single space after the default assignment.

Violation

g_width : integer :=32;
g_depth : integer := 512;

Fix

g_width : integer := 32;
g_depth : integer := 512;

15.23.7 generic_007

This rule checks the generic names have proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

G_WIDTH : integer := 32;

Fix

g_width : integer := 32;

15.23.8 generic_008

This rule checks the indent of the closing parenthesis.

Violation

g_depth : integer := 512
);

15.23. Generic Rules 189

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Fix

g_depth : integer := 512
);

15.23.9 generic_009

This rule checks the generic keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

GENERIC (

Fix

generic (

15.23.10 generic_010

This rule checks the closing parenthesis is on a line by itself.

Violation

g_depth : integer := 512);

Fix

g_depth : integer := 512
);

15.23.11 generic_013

This rule checks for the generic keyword on the same line as a generic declaration.

Violation

generic (g_depth : integer := 512;

Fix

generic (
g_depth : integer := 512;

190 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.23.12 generic_014

This rule checks for at least a single space before the colon.

Violation

g_address_width: integer := 10;
g_data_width : integer := 32;
g_depth: integer := 512;

Fix

g_address_width : integer := 10;
g_data_width : integer := 32;
g_depth : integer := 512;

15.23.13 generic_016

This rule checks for multiple generics defined on a single line.

Violation

generic (
g_width : std_logic := '0';g_depth : std_logic := '1'

);

Fix

generic (
g_width : std_logic := '0';
g_depth : std_logic := '1'

);

15.23.14 generic_017

This rule checks the generic type has proper case if it is a VHDL keyword.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

generic (
g_width : STD_LOGIC := '0';
g_depth : Std_logic := '1'

);

Fix

15.23. Generic Rules 191

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

generic (
g_width : std_logic := '0';
g_depth : std_logic := '1'

);

15.23.15 generic_018

This rule checks the generic keyword is on the same line as the (.

Violation

generic
(

Fix

generic (

15.23.16 generic_019

This rule checks for blank lines before the); of the generic declaration.

Violation

generic (
g_width : std_logic := '0';
g_depth : Std_logic := '1'

);

Fix

generic (
g_width : std_logic := '0';
g_depth : Std_logic := '1'

);

15.23.17 generic_020

This rule checks for valid prefixes on generic identifiers. The default generic prefix is g_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

generic(my_generic : integer);

Fix

192 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules

vhdl-style-guide Documentation, Release 3.2.0

generic(g_my_generic : integer);

15.23.18 generic_600

This rule checks for valid suffixes on generic identifiers. The default generic suffix is _g.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

generic(my_generic : integer);

Fix

generic(my_generic_g : integer);

15.24 Generic Map Rules

15.24.1 generic_map_001

This rule checks the generic map keywords have proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

GENERIC MAP (

Fix

generic map (

15.24.2 generic_map_002

This rule checks generic names have proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

generic map (
DEPTH => 512,
WIDTH => 32

)

Fix

15.24. Generic Map Rules 193

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

generic map (
depth => 512,
width => 32

)

15.24.3 generic_map_003

This rule checks the (is on the same line as the generic map keywords.

Violation

generic map
(

WIDTH => 32,
DEPTH => 512

)

Fix

Use explicit port mapping.

generic map (
WIDTH => 32,
DEPTH => 512

)

15.24.4 generic_map_004

This rule checks for the closing parenthesis) on generic maps are on their own line.

Violation

generic map (
GENERIC_1 => 0,
GENERIC_2 => TRUE,
GENERIC_3 => FALSE)

Fix

generic map (
GENERIC_1 => 0,
GENERIC_2 => TRUE,
GENERIC_3 => FALSE

)

15.24.5 generic_map_005

This rule checks if the generic map keywords and a generic assignment are on the same line.

Violation

194 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

generic map (DEPTH => 512,
WIDTH => 32

)

Fix

generic map (
DEPTH => 512,
WIDTH => 32

)

15.24.6 generic_map_006

This rule checks for a single space between the map keyword and the (.

Violation

generic map(

generic map (

Fix

generic map (

generic map (

15.24.7 generic_map_007

This rule checks for a single space after the => keyword in generic maps.

Violation

generic map
(

WIDTH => 32,
DEPTH => 512

)

Fix

generic map
(

WIDTH => 32,
DEPTH => 512

)

15.24.8 generic_map_008

15.24. Generic Map Rules 195

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

This rule checks for positional generics. Positional ports and generics are subject to problems when the position of the
underlying component changes.

Violation

port map (
WR_EN, RD_EN, OVERFLOW

);

Fix

Use explicit port mapping.

port map (
WR_EN => WR_EN,
RD_EN => RD_EN,
OVERFLOW => OVERFLOW

);

15.25 If Rules

15.25.1 if_001

This rule checks the indent of the if keyword.

Violation

if (a = '1') then
b <= '0'

elsif (c = '1') then
d <= '1';

else
e <= '0';

end if;

Fix

if (a = '1') then
b <= '0'

elsif (c = '1') then
d <= '1';

else
e <= '0';

end if;

15.25.2 if_002

This rule checks the bolean expression is enclosed in ().

Note: There is a configuration option parenthesis which will either insert or remove the parenthesis.

196 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

parenthesis set to ‘insert’ (Default)

Violation

if a = '1' then

Fix

if (a = '1') then

parenthesis set to ‘remove’

Violation

if (a = '1') then

Fix

if a = '1' then

15.25.3 if_003

This rule checks for a single space between the if keyword and the (.

Violation

if(a = '1') then

if (a = '1') then

Fix

if (a = '1') then

if (a = '1') then

15.25.4 if_004

This rule checks for a single space between the) and the then keyword.

Violation

if (a = '1')then

if (a = '1') then

Fix

if (a = '1') then

if (a = '1') then

15.25. If Rules 197

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.25.5 if_005

This rule checks for a single space between the elsif keyword and the (.

Violation

elsif(c = '1') then

elsif (c = '1') then

Fix

elsif (c = '1') then

elsif (c = '1') then

15.25.6 if_006

This rule checks for empty lines after the then keyword.

Violation

if (a = '1') then

b <= '0'

Fix

if (a = '1') then
b <= '0'

15.25.7 if_007

This rule checks for empty lines before the elsif keyword.

Violation

b <= '0'

elsif (c = '1') then

Fix

b <= '0'
elsif (c = '1') then

198 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.25.8 if_008

This rule checks for empty lines before the end if keywords.

Violation

e <= '0';

end if;

Fix

e <= '0';
end if;

15.25.9 if_009

This rule checks the alignment of multiline boolean expressions.

Violation

if (a = '0' and b = '1' and
c = '0') then

Fix

if (a = '0' and b = '1' and
c = '0') then

15.25.10 if_010

This rule checks for empty lines before the else keyword.

Violation

d <= '1';

else

Fix

d <= '1';
else

15.25.11 if_011

15.25. If Rules 199

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

This rule checks for empty lines after the else keyword.

Violation

else

e <= '0';

Fix

else
e <= '0';

15.25.12 if_012

This rule checks the indent of the elsif keyword.

Violation

if (a = '1') then
b <= '0'
elsif (c = '1') then
d <= '1';

else
e <= '0';

end if;

Fix

if (a = '1') then
b <= '0'

elsif (c = '1') then
d <= '1';

else
e <= '0';

end if;

15.25.13 if_013

This rule checks the indent of the else keyword.

Violation

if (a = '1') then
b <= '0'

elsif (c = '1') then
d <= '1';
else
e <= '0';

end if;

Fix

200 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

if (a = '1') then
b <= '0'

elsif (c = '1') then
d <= '1';

else
e <= '0';

end if;

15.25.14 if_014

This rule checks the indent of the end if keyword.

Violation

if (a = '1') then
b <= '0'

elsif (c = '1') then
d <= '1';

else
e <= '0';
end if;

Fix

if (a = '1') then
b <= '0'

elsif (c = '1') then
d <= '1';

else
e <= '0';

end if;

15.25.15 if_015

This rule checks for a single space between the end if keywords.

Violation

end if;

Fix

end if;

15.25.16 if_020

This rule checks the end if keyword is on it’s own line.

Violation

15.25. If Rules 201

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

if (a = '1') then c <= '1'; else c <= '0'; end if;

Fix

if (a = '1') then c <= '1'; else c <= '0';
end if;

15.25.17 if_021

This rule checks the else keyword is on it’s own line.

Violation

if (a = '1') then c <= '1'; else c <= '0'; end if;

Fix

if (a = '1') then c <= '0';
else c <= '1'; end if;

15.25.18 if_022

This rule checks for code after the else keyword.

Violation

if (a = '1') then c <= '1'; else c <= '0'; end if;

Fix

if (a = '1') then c <= '1'; else
c <= '0'; end if;

15.25.19 if_023

This rule checks the elsif keyword is on it’s own line.

Violation

if (a = '1') then c <= '1'; else c <= '0'; elsif (b = '0') then d <= '0'; end if;

Fix

if (a = '1') then c <= '1'; else c <= '0';
elsif (b = '0') then d <= '0'; end if;

202 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.25.20 if_024

This rule checks for code after the then keyword.

Violation

if (a = '1') then c <= '1';

Fix

if (a = '1') then
c <= '1';

15.25.21 if_025

This rule checks the if keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

IF (a = '1') then

Fix

if (a = '1') then

15.25.22 if_026

This rule checks the elsif keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

ELSIF (a = '1') then

Fix

elsif (a = '1') then

15.25.23 if_027

This rule checks the else keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

15.25. If Rules 203

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

ELSE

Fix

else

15.25.24 if_028

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

END if;

End if;

Fix

end if;

end if;

15.25.25 if_029

This rule checks the then keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

if (a = '1') THEN

Fix

if (a = '1') then

15.25.26 if_030

This rule checks a single blank line after the end if. In the case of nested if statements, the rule will be enfoced on the
last end if.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

204 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-blank-lines

vhdl-style-guide Documentation, Release 3.2.0

if (A = '1') then
B <= '0';

end if;
C <= '1';

Fix

if (A = '1') then
B <= '0';

end if;

C <= '1';

15.25.27 if_031

This rule checks for blank lines or comments above the if keyword. In the case of nested if statements, the rule will be
enfoced on the first if.

Refer to Configuring Previous Line Rules for options.

The default style is no_code.

Violation

C <= '1';
if (A = '1') then

B <= '0';
end if;

-- This is a comment
if (A = '1') then

B <= '0';
end if;

Fix

C <= '1';

if (A = '1') then
B <= '0';

end if;

-- This is a comment
if (A = '1') then

B <= '0';
end if;

15.25.28 if_032

This rule aligns consecutive comment only lines above the elsif keyword in if statements. These comments are used
to describe what the elsif code is going to do.

Violation

15.25. If Rules 205

phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

-- comment 1
-- comment 2

-- comment 3
elsif (a = '1')
rd_en <= '0';

Fix

-- comment 1
-- comment 2
-- comment 3
elsif (a = '1')

rd_en <= '0';

15.25.29 if_033

This rule aligns consecutive comment only lines above the else keyword in if statements. These comments are used to
describe what the elsif code is going to do.

Violation

-- comment 1
-- comment 2

-- comment 3
else
rd_en <= '0';

Fix

-- comment 1
-- comment 2
-- comment 3
else

rd_en <= '0';

15.25.30 if_034

This rule checks the if keyword in the end if has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end If;

end IF;

Fix

end if;

end if;

206 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.25.31 if_035

This rule checks the expression after the if or elsif keyword starts on the same line.

Violation

if
a = '1' then

elsif
b = '1' then

Fix

if a = '1' then

elsif b = '1' then

15.26 Instantiation Rules

15.26.1 instantiation_001

This rule checks for the proper indentation of instantiations.

Violation

U_FIFO : FIFO
port map (

WR_EN => wr_en,
RD_EN => rd_en,

OVERFLOW => overflow
);

Fix

U_FIFO : FIFO
port map (
WR_EN => wr_en,
RD_EN => rd_en,
OVERFLOW => overflow

);

15.26.2 instantiation_002

This rule checks for a single space after the colon.

Violation

U_FIFO :FIFO

15.26. Instantiation Rules 207

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Fix

U_FIFO : FIFO

15.26.3 instantiation_003

This rule checks for a single space before the colon.

Violation

U_FIFO: FIFO

Fix

U_FIFO : FIFO

15.26.4 instantiation_004

This rule checks for blank lines or comments above the instantiation.

Refer to Configuring Previous Line Rules for options.

The default style is no_code.

Violation

WR_EN <= '1';
U_FIFO : FIFO

-- Instantiate another FIFO
U_FIFO2 : FIFO

Fix

WR_EN <= '1';

U_FIFO : FIFO

-- Instantiate another FIFO
U_FIFO2 : FIFO

15.26.5 instantiation_005

This rule checks the port map keywords are on their own line.

Violation

U_FIFO : FIFO port map (

Fix

208 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

U_FIFO : FIFO
port map (

15.26.6 instantiation_006

This rule has been renamed to port_map_001.

15.26.7 instantiation_007

This rule has been renamed to port_map_004.

15.26.8 instantiation_008

This rule checks the instance label has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

U_FIFO : fifo

Fix

u_fifo : fifo

15.26.9 instantiation_009

This rule checks the component name has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

u_fifo : FIFO

Fix

u_fifo : fifo

15.26.10 instantiation_010

This rule checks the alignment of the => operator for each generic and port in the instantiation.

Following extra configurations are supported:

• separate_generic_port_alignment.

15.26. Instantiation Rules 209

port_map_rules.html#port-map-001
port_map_rules.html#port-map-004
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

U_FIFO : FIFO
generic map (
g_width => 8,
g_delay => 2

)
port map (
wr_en => wr_en,
rd_en => rd_en,
overflow => overflow

);

Fix

U_FIFO : FIFO
generic map (
g_width => 8,
g_delay => 2

)
port map (
wr_en => wr_en,
rd_en => rd_en,
overflow => overflow

);

15.26.11 instantiation_011

This rule has been renamed to port_map_002.

15.26.12 instantiation_012

This rule checks the instantiation declaration and the generic map keywords are not on the same line.

Violation

U_FIFO : FIFO generic map (

Fix

U_FIFO : FIFO
generic map (

15.26.13 instantiation_013

This rule has been renamed to generic_map_001.

15.26.14 instantiation_014

This rule has been renamed to generic_map_004.

210 Chapter 15. Rules

configuring.html#configuring-keyword-alignment-rules
port_map_rules.html#port-map-002
phases.html
rule_severity.html
generic_map_rules.html#generic-map-001
generic_map_rules.html#generic-map-004

vhdl-style-guide Documentation, Release 3.2.0

15.26.15 instantiation_016

This rule has been renamed to generic_map_002.

15.26.16 instantiation_017

This rule has been renamed to generic_map_005.

15.26.17 instantiation_018

This rule has been renamed to generic_map_006.

15.26.18 instantiation_019

This rule checks for a blank line below the end of the instantiation declaration.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

U_FIFO : FIFO
port map (
WR_EN => wr_en,
RD_EN => rd_en,
OVERFLOW => overflow

);
U_RAM : RAM

Fix

U_FIFO : FIFO
port map (
WR_EN => wr_en,
RD_EN => rd_en,
OVERFLOW => overflow

);

U_RAM : RAM

15.26.19 instantiation_020

This rule has been renamed to port_map_005.

15.26.20 instantiation_021

This rule has been renamed to port_map_009.

15.26.21 instantiation_022

This rule has been renamed to port_map_007.

15.26. Instantiation Rules 211

generic_map_rules.html#generic-map-002
generic_map_rules.html#generic-map-005
generic_map_rules.html#generic-map-006
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
port_map_rules.html#port-map-005
port_map_rules.html#port-map-009
port_map_rules.html#port-map-007

vhdl-style-guide Documentation, Release 3.2.0

15.26.22 instantiation_023

This rule checks for comments at the end of the port and generic assignments in instantiations. These comments
represent additional maintainence. They will be out of sync with the entity at some point. Refer to the entity for port
types, port directions and purpose.

Violation

WR_EN => w_wr_en; -- out : std_logic
RD_EN => w_rd_en; -- Reads data when asserted

Fix

WR_EN => w_wr_en;
RD_EN => w_rd_en;

15.26.23 instantiation_024

This rule has been split into:

• generic_map_008

• port_map_008

15.26.24 instantiation_025

This rule has been renamed to port_map_003.

15.26.25 instantiation_026

This rule has been renamed to generic_map_003.

15.26.26 instantiation_027

This rule checks the entity keyword has proper case in direct instantiations.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

INSTANCE_NAME : ENTITY library.ENTITY_NAME

Fix

INSTANCE_NAME : entity library.ENTITY_NAME

212 Chapter 15. Rules

phases.html
rule_severity.html
generic_map_rules.html#generic-map-008
port_map_rules.html#port-map-008
port_map_rules.html#port-map-003
generic_map_rules.html#generic-map-003
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.26.27 instantiation_028

This rule checks the entity name has proper case in direct instantiations.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

instance_name : entity library.ENTITY_NAME

Fix

instance_name : entity library.entity_name

15.26.28 instantiation_029

This rule checks for alignment of inline comments in an instantiation.

Following extra configurations are supported:

• separate_generic_port_alignment.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations. Violation

Violation

wr_en => write_enable, -- Wrte enable
rd_en => read_enable, -- Read enable
overflow => overflow, -- FIFO has overflowed

Fix

wr_en => write_enable, -- Wrte enable
rd_en => read_enable, -- Read enable
overflow => overflow, -- FIFO has overflowed

15.26.29 instantiation_030

This rule has been renamed to generic_map_007.

15.26.30 instantiation_031

This rule checks the component keyword has proper case in component instantiations that use the component keyword.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

instance_name : COMPONENT entity_name

Fix

15.26. Instantiation Rules 213

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
generic_map_rules.html#generic-map-007
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

instance_name : component entity_name

15.26.31 instantiation_032

This rule checks for a single space after the component keyword if it is used.

Violation

INSTANCE_NAME : component ENTITY_NAME
INSTANCE_NAME : component ENTITY_NAME
INSTANCE_NAME : component ENTITY_NAME

Fix

INSTANCE_NAME : component ENTITY_NAME
INSTANCE_NAME : component ENTITY_NAME
INSTANCE_NAME : component ENTITY_NAME

15.26.32 instantiation_033

This rule checks for the component keyword for a component instantiation.

Refer to the section Configuring Optional Items for options.

Violation

INSTANCE_NAME : ENTITY_NAME

Fix

INSTANCE_NAME : component ENTITY_NAME

15.26.33 instantiation_034

This rule checks for component versus direct instantiations.

Refer to the section Configuring Type of Instantiation for options to configure the allowed configuration.

component instantiation

Note: This is the default configuration

Violation

U_FIFO : entity fifo_dsn.FIFO(RTL)

214 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html
configuring.html#configuring-type-of-instantiations

vhdl-style-guide Documentation, Release 3.2.0

entity instantiation

Violation

U_FIFO : component FIFO

U_FIFO : FIFO

15.26.34 instantiation_600

This rule checks for valid suffixes on instantiation labels. The default suffix is _inst.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

fifo_32x2k : FIFO

Fix

fifo_32x2k_inst : FIFO

15.26.35 instantiation_601

This rule checks for valid prefixes on instantiation labels. The default prefix is inst_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

fifo_32x2k : FIFO

Fix

inst_fifo_32x2k : FIFO

15.27 Length Rules

These rules cover the length of lines in the VHDL file.

15.27.1 length_001

This rule checks the length of the line.

Refer to the section Configuring Length Rules for configuring this option.

15.27. Length Rules 215

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
configuring.html#configuring-length-rules

vhdl-style-guide Documentation, Release 3.2.0

15.27.2 length_002

This rule checks the length of a file.

Refer to the section Configuring Length Rules for configuring this option.

15.27.3 length_003

This rule checks the length of a process statement.

Refer to the section Configuring Length Rules for configuring this option.

15.28 Library Rules

15.28.1 library_001

This rule checks the indent of the library keyword. Indenting helps in comprehending the code.

Violation

library ieee;
library fifo_dsn;

Fix

library ieee;
library fifo_dsn;

15.28.2 library_002

This rule checks for excessive spaces after the library keyword.

Violation

library ieee;

Fix

library ieee;

15.28.3 library_003

This rule checks for blank lines or comments above the entity keyword.

Refer to the section Configuring Previous Line Rules for options.

216 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-length-rules
phases.html
rule_severity.html
configuring.html#configuring-length-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules

vhdl-style-guide Documentation, Release 3.2.0

There is an additional allow_library_clause option which can be set. Refer to section Reporting Single Rule Config-
uration for details on finding configuration options for individual rules.

allow_library_clause

When set to True, it allows consecutive library clauses.

Violation

library ieee;
use ieee.std_logic_1164.all;

library top_dsn;
library fifo_dsn;

Fix

library ieee;
use ieee.std_logic_1164.all;

library top_dsn;
library fifo_dsn;

15.28.4 library_004

This rule checks the library keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

Library ieee;

LIBRARY fifo_dsn;

Fix

library ieee;

library fifo_dsn;

15.28.5 library_005

This rule checks the use keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

library ieee;
USE ieee.std_logic_1164.all;
Use ieee.std_logic_unsigned.all;

Fix

15.28. Library Rules 217

configuring.html#reporting-single-rule-configuration
configuring.html#reporting-single-rule-configuration
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

15.28.6 library_006

This rule checks for excessive spaces after the use keyword.

Violation

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

Fix

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

15.28.7 library_007

This rule checks for blank lines or comments above the process declaration.

Refer to the section Configuring Blank Lines for options regarding comments.

The default style is no_blank.

Violation

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

Fix

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

15.28.8 library_008

This rule checks the indent of the use keyword.

Violation

218 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

Fix

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

15.28.9 library_009

This rule checks alignment of comments above library use statements.

Violation

library ieee;
-- Use standard logic library

use ieee.std_logic_1164.all;

Fix

library ieee;
-- Use standard logic library
use ieee.std_logic_1164.all;

15.28.10 library_010

This rule checks the library keyword is on it’s own line.

Violation

context c1 is library ieee; use ieee.std_logic_1164.all; end context c1;

Fix

context c1 is
library ieee; use ieee.std_logic_1164.all; end context c1;

15.28.11 library_011

This rule checks the use keyword is on it’s own line.

Violation

context c1 is library ieee; use ieee.std_logic_1164.all; end context c1;

Fix

15.28. Library Rules 219

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

context c1 is library ieee;
use ieee.std_logic_1164.all; end context c1;

15.29 Loop Statement Rules

15.29.1 loop_statement_300

This rule checks the indentation of the loop keyword.

Violation

fifo_proc : process () is
begin

loop

end loop;

end process;

Fix

fifo_proc : process () is
begin

loop

end loop;

end process;

15.30 Package Rules

15.30.1 package_001

This rule checks the indent of the package declaration.

Violation

library ieee;

package FIFO_PKG is

Fix

library ieee;

package FIFO_PKG is

220 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.30.2 package_002

This rule checks for a single space between package and is keywords.

Violation

package FIFO_PKG is

Fix

package FIFO_PKG is

15.30.3 package_003

This rule checks for blank lines or comments above the package keyword.

Refer to Configuring Previous Line Rules for options.

The default style is no_code.

Violation

library ieee;
package FIFO_PKG is

Fix

library ieee;

package FIFO_PKG is

15.30.4 package_004

This rule checks the package keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

PACKAGE FIFO_PKG is

Fix

package FIFO_PKG is

15.30.5 package_005

This rule checks the is keyword is on the same line as the package keyword.

Violation

15.30. Package Rules 221

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

package FIFO_PKG
is

Fix

package FIFO_PKG is

15.30.6 package_006

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

END package fifo_pkg;

Fix

end package fifo_pkg;

15.30.7 package_007

This rule checks for the package keyword on the end package declaration.

Refer to the section Configuring Optional Items for options.

Violation

end FIFO_PKG;

Fix

end package FIFO_PKG;

15.30.8 package_008

This rule checks the package name has proper case on the end package declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end package FIFO_PKG;

Fix

end package fifo_pkg;

222 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.30.9 package_009

This rule checks for a single space between the end and package keywords and package name.

Violation

end package FIFO_PKG;

Fix

end package FIFO_PKG;

15.30.10 package_010

This rule checks the package name has proper case in the package declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

package FIFO_PKG is

Fix

package fifo_pkg is

15.30.11 package_011

This rule checks for a blank line below the package keyword.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

package FIFO_PKG is
constant width : integer := 32;

Fix

package FIFO_PKG is

constant width : integer := 32;

15.30.12 package_012

This rule checks for blank lines or comments above the end package keyword.

Refer to Configuring Blank Lines for options.

Violation

15.30. Package Rules 223

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines

vhdl-style-guide Documentation, Release 3.2.0

constant depth : integer := 512;
end package FIFO_PKG;

Fix

constant depth : integer := 512;

end package FIFO_PKG;

15.30.13 package_013

This rule checks the is keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

package fifo_pkg IS

Fix

package fifo_pkg is

15.30.14 package_014

This rule checks the package name exists on the same line as the end package keywords.

Refer to the section Configuring Optional Items for options.

Violation

end package;

Fix

end package fifo_pkg;

15.30.15 package_015

This rule checks the indent of the end package declaration.

Violation

package FIFO_PKG is

end package fifo_pkg;

Fix

224 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

package fifo_pkg is

end package fifo_pkg;

15.30.16 package_016

This rule checks for valid suffixes on package identifiers. The default package suffix is _pkg.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

package foo is

Fix

package foo_pkg is

15.30.17 package_017

This rule checks for valid prefixes on package identifiers. The default package prefix is pkg_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

package foo is

Fix

package pkg_foo is

15.30.18 package_018

This rule checks the package keyword in the end package has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end PACKAGE fifo_pkg;

Fix

end package fifo_pkg;

15.30. Package Rules 225

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.30.19 package_019

This rule checks the identifiers for all declarations are aligned in the package declarative region.

Refer to the section Configuring Identifier Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
signal sig1 : natural;
constant c_period : time;

Fix

variable var1 : natural;
signal sig1 : natural;
constant c_period : time;

15.30.20 package_400

This rule checks the colons are in the same column for all declarations in the package declarative part.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

package my_package is

signal wr_en : std_logic;
signal rd_en : std_logic;
constant c_period : time;

end package my_package;

Fix

package my_package is

signal wr_en : std_logic;
signal rd_en : std_logic;
constant c_period : time;

end package my_package;

15.30.21 package_401

This rule checks the alignment of inline comments in the package declarative part.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

226 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-identifier-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

package my_package is

signal wr_en : std_logic; -- Comment 1
signal rd_en : std_logic; -- Comment 2
constant c_period : time; -- Comment 3

end package my_package;

Fix

package my_package is

signal wr_en : std_logic; -- Comment 1
signal rd_en : std_logic; -- Comment 2
constant c_period : time; -- Comment 3

end package my_package;

15.31 Package Body Rules

15.31.1 package_body_001

This rule checks the is keyword is on the same line as the package keyword.

Violation

package body FIFO_PKG
is

Fix

package body FIFO_PKG is

15.31.2 package_body_002

This rule checks for the optional package body keywords on the end package body declaration.

Refer to the section Configuring Optional Items for options.

Violation

end FIFO_PKG;

Fix

end package body FIFO_PKG;

15.31. Package Body Rules 227

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-optional-items

vhdl-style-guide Documentation, Release 3.2.0

15.31.3 package_body_003

This rule checks the package name exists in the closing of the package body declaration.

Refer to the section Configuring Optional Items for options.

Violation

end package body;

Fix

end package body fifo_pkg;

15.31.4 package_body_100

This rule checks for a single space between package, body and is keywords.

Violation

package body FIFO_PKG is

Fix

package body FIFO_PKG is

15.31.5 package_body_101

This rule checks for a single space between the end, package and body keywords and package name.

Violation

end package body FIFO_PKG;

Fix

end package body FIFO_PKG;

15.31.6 package_body_200

This rule checks for blank lines or comments above the package keyword.

Refer to Configuring Previous Line Rules for options.

Violation

library ieee;
package body FIFO_PKG is

228 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules

vhdl-style-guide Documentation, Release 3.2.0

Fix

library ieee;

package body FIFO_PKG is

15.31.7 package_body_201

This rule checks for a blank line below the package keyword.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

package body FIFO_PKG is
constant width : integer := 32;

Fix

package body FIFO_PKG is

constant width : integer := 32;

15.31.8 package_body_202

This rule checks for blank lines or comments above the end keyword.

Refer to Configuring Blank Lines for options.

Violation

constant depth : integer := 512;
end package body FIFO_PKG;

Fix

constant depth : integer := 512;

end package body FIFO_PKG;

15.31.9 package_body_203

This rule checks for a blank line below the end package keyword.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

end package body FIFO_PKG;
library ieee;

15.31. Package Body Rules 229

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines

vhdl-style-guide Documentation, Release 3.2.0

Fix

end package body FIFO_PKG;

15.31.10 package_body_300

This rule checks the indent of the package body keyword.

Violation

library ieee;

package body FIFO_PKG is

Fix

library ieee;

package body FIFO_PKG is

15.31.11 package_body_301

This rule checks the indent of the end package declaration.

Violation

package body FIFO_PKG is

end package body fifo_pkg;

Fix

package body fifo_pkg is

end package body fifo_pkg;

15.31.12 package_body_400

This rule checks the identifiers for all declarations are aligned in the package body declarative region.

Refer to the section Configuring Identifier Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
constant c_period : time;

Fix

230 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-identifier-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

variable var1 : natural;
constant c_period : time;

15.31.13 package_body_500

This rule checks the package keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

PACKAGE body FIFO_PKG is

Fix

package body FIFO_PKG is

15.31.14 package_body_501

This rule checks the body keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

package BODY FIFO_PKG is

Fix

package body FIFO_PKG is

15.31.15 package_body_502

This rule checks the package name has proper case in the package declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

package body FIFO_PKG is

Fix

package body fifo_pkg is

15.31. Package Body Rules 231

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.31.16 package_body_503

This rule checks the is keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

package fifo_pkg IS

Fix

package fifo_pkg is

15.31.17 package_body_504

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

END package fifo_pkg;

Fix

end package fifo_pkg;

15.31.18 package_body_505

This rule checks the package keyword in the end package body has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end PACKAGE body fifo_pkg;

Fix

end package body fifo_pkg;

15.31.19 package_body_506

This rule checks the body keyword in the end package body has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

232 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

end package BODY fifo_pkg;

Fix

end package body fifo_pkg;

15.31.20 package_body_507

This rule checks the package name has proper case on the end package declaration.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end package body FIFO_PKG;

Fix

end package fifo_pkg;

15.31.21 package_body_600

This rule checks for valid suffixes on package body identifiers. The default package suffix is _pkg.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

package body foo is

Fix

package body foo_pkg is

15.31.22 package_body_601

This rule checks for valid prefixes on package body identifiers. The default package prefix is pkg_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

package body foo is

Fix

package body pkg_foo is

15.31. Package Body Rules 233

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules

vhdl-style-guide Documentation, Release 3.2.0

15.32 Port Rules

15.32.1 port_001

This rule checks for a blank line above the port keyword.

Violation

entity FIFO is

port (

Fix

entity FIFO is
port (

15.32.2 port_002

This rule checks the indent of the port keyword.

Violation

entity FIFO is
port (

Fix

entity FIFO is
port (

15.32.3 port_003

This rule checks for a single space after the port keyword and (.

Violation

port (

port(

Fix

port (

port (

234 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.32.4 port_004

This rule checks the indent of port declarations.

Violation

port (
WR_EN : in std_logic;

RD_EN : in std_logic;
OVERFLOW : out std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic

);

15.32.5 port_005

This rule checks for a single space after the colon.

Violation

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW :out std_logic;
DATA :inout std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

15.32.6 port_006

This rule has been depricated and it’s function was include in rule port_005.

15.32.7 port_007

This rule checks for four spaces after the in keyword.

15.32. Port Rules 235

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Violation

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic

);

15.32.8 port_008

This rule checks for three spaces after the out keyword.

Violation

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic

);

15.32.9 port_009

This rule checks for a single space after the inout keyword.

Violation

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
DATA : inout std_logic

);

Fix

236 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
DATA : inout std_logic

);

15.32.10 port_010

This rule checks port names are uppercase.

Violation

port (
wr_en : in std_logic;
rd_en : in std_logic;
OVERFLOW : out std_logic;
underflow : out std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
UNDERFLOW : out std_logic

);

15.32.11 port_011

This rule checks for valid prefixes on port identifiers. The default port prefixes are: i_, o_, io_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

port (
wr_en : in std_logic;
rd_en : in std_logic;
overflow : out std_logic;
data : inout std_logic

);

Fix

port (
i_wr_en : in std_logic;
i_rd_en : in std_logic;
o_overflow : out std_logic;
io_data : inout std_logic

);

15.32. Port Rules 237

phases.html
rule_severity.html
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules

vhdl-style-guide Documentation, Release 3.2.0

15.32.12 port_012

This rule checks for default assignments on port declarations.

This rule is defaulted to not fixable and can be overridden with a configuration to remove the default assignments.

Violation

port (
I_WR_EN : in std_logic := '0';
I_RD_EN : in std_logic := '0';
O_OVERFLOW : out std_logic;
IO_DATA : inout std_logic := (others => 'Z')

);

Fix

port (
I_WR_EN : in std_logic;
I_RD_EN : in std_logic;
O_OVERFLOW : out std_logic;
IO_DATA : inout std_logic

);

15.32.13 port_013

This rule checks for multiple ports declared on a single line.

Violation

port (
WR_EN : in std_logic;RD_EN : in std_logic;
OVERFLOW : out std_logic;DATA : inout std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

15.32.14 port_014

This rule checks the closing parenthesis of the port map is on a line by itself.

Violation

238 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

15.32.15 port_015

This rule checks the indent of the closing parenthesis for port maps.

Violation

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic
);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

15.32.16 port_016

This rule checks for a port definition on the same line as the port keyword.

Violation

port (WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

Fix

15.32. Port Rules 239

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

15.32.17 port_017

This rule checks the port keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

PORT (

Fix

port (

15.32.18 port_018

This rule checks the port type has proper case if it is a VHDL keyword.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

port (
WR_EN : in STD_LOGIC;
RD_EN : in std_logic;
OVERFLOW : out t_OVERFLOW;
DATA : inout STD_LOGIC_VECTOR(31 downto 0)

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out t_OVERFLOW;
DATA : inout std_logic_vector(31 downto 0)

);

15.32.19 port_019

This rule checks the port direction has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

240 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

Violation

port (
WR_EN : IN std_logic;
RD_EN : in std_logic;
OVERFLOW : OUT std_logic;
DATA : INOUT std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

15.32.20 port_020

This rule checks for at least one space before the colon.

Violation

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW: out std_logic;
DATA : inout std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

15.32.21 port_021

This rule checks the port keyword is on the same line as the (.

Violation

port
(

Fix

15.32. Port Rules 241

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

port (

15.32.22 port_022

This rule checks for blank lines after the port keyword.

Violation

port (

WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW: out std_logic;
DATA : inout std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

15.32.23 port_023

This rule checks for missing modes in port declarations.

Note: This must be fixed by the user. VSG makes no assumption on the direction of the port.

Violation

port (
WR_EN : std_logic;
RD_EN : std_logic;
OVERFLOW : std_logic;
DATA : inout std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

242 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.32.24 port_024

This rule checks for blank lines before the close parenthesis in port declarations.

Violation

port (
WR_EN : std_logic;
RD_EN : std_logic;
OVERFLOW : std_logic;
DATA : inout std_logic

);

Fix

port (
WR_EN : in std_logic;
RD_EN : in std_logic;
OVERFLOW : out std_logic;
DATA : inout std_logic

);

15.32.25 port_025

This rule checks for valid suffixes on port identifiers. The default port suffixes are _i, _o, _io.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

port (
wr_en : in std_logic;
rd_en : in std_logic;
overflow : out std_logic;
data : inout std_logic

);

Fix

port (
wr_en_i : in std_logic;
rd_en_i : in std_logic;
overflow_o : out std_logic;
data_io : inout std_logic

);

15.32.26 port_026

This rule checks for multiple identifiers on port declarations.

15.32. Port Rules 243

phases.html
rule_severity.html
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Any comments are not replicated.

Violation

port (
wr_en, rd_en : in std_logic; -- Comment
data : inout std_logic;
overflow, empty : out std_logic -- Other comment

);

Fix

port (
wr_en : in std_logic;
rd_en : in std_logic; -- Comment
data : inout std_logic
overflow : out std_logic;
empty : out std_logic -- Other comment

);

15.33 Port Map Rules

15.33.1 port_map_001

This rule checks the port map keywords have proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

PORT MAP (

Fix

port map (

15.33.2 port_map_002

This rule checks the port name is uppercase. Indexes on ports will not be uppercased.

Violation

port map (
wr_en => wr_en,
rd_en => rd_en,
OVERFLOW => overflow,
underflow(c_index) => underflow

);

Fix

244 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

port map (
WR_EN => wr_en,
RD_EN => rd_en,
OVERFLOW => overflow,
UNDERFLOW(c_index) => underflow

);

15.33.3 port_map_003

This rule checks the (is on the same line as the port map keywords.

Violation

port map
(

WR_EN => WR_EN,
RD_EN => RD_EN,
OVERFLOW => OVERFLOW

);

Fix

Use explicit port mapping.

port map (
WR_EN => WR_EN,
RD_EN => RD_EN,
OVERFLOW => OVERFLOW

);

15.33.4 port_map_004

This rule checks the closing) for the port map is on it’s own line.

Violation

port map (
WR_EN => wr_en);

Fix

port map (
WR_EN => wr_en

);

15.33.5 port_map_005

This rule checks for a port assignment on the same line as the port map keyword.

Violation

15.33. Port Map Rules 245

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

port map (WR_EN => wr_en,
RD_EN => rd_en,
OVERFLOW => overflow

);

Fix

port map (
WR_EN => wr_en,
RD_EN => rd_en,
OVERFLOW => overflow

);

15.33.6 port_map_007

This rule checks for a single space after the => operator in port maps.

Violation

U_FIFO : FIFO
port map (
WR_EN => wr_en,
RD_EN =>rd_en,
OVERFLOW => overflow

);

Fix

U_FIFO : FIFO
port map (
WR_EN => wr_en,
RD_EN => rd_en,
OVERFLOW => overflow

);

15.33.7 port_map_008

This rule checks for positional ports. Positional ports are subject to problems when the position of the underlying
component changes.

Violation

port map (
WR_EN, RD_EN, OVERFLOW

);

Fix

Use explicit port mapping.

246 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

port map (
WR_EN => WR_EN,
RD_EN => RD_EN,
OVERFLOW => OVERFLOW

);

15.33.8 port_map_009

This rule checks multiple port assignments on the same line.

Violation

port map (
WR_EN => w_wr_en, RD_EN => w_rd_en,
OVERFLOW => w_overflow

);

Fix

port map (
WR_EN => w_wr_en,
RD_EN => w_rd_en,
OVERFLOW => w_overflow

);

15.34 Procedure Rules

There are three forms a procedure: with parameters, without parameters, and a package declaration:

with parameters

procedure average_samples (
constant a : in integer;
signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic) is

begin
end procedure average_samples;

without parameters

procedure average_samples is
begin
end procedure average_samples;

package declaration

procedure average_samples;

procedure average_samples (
constant a : in integer;
signal b : in std_logic;

(continues on next page)

15.34. Procedure Rules 247

phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic);

15.34.1 procedure_001

This rule checks the indent of the procedure keyword.

Violation

procedure average_samples (
constant a : in integer;
signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic) is

begin
end procedure average_samples;

Fix

procedure average_samples (
constant a : in integer;
signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic) is

begin
end procedure average_samples;

15.34.2 procedure_002

This rule checks the indent of the begin keyword.

Violation

procedure average_samples (
constant a : in integer;
signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic) is
begin

end procedure average_samples;

Fix

procedure average_samples (
constant a : in integer;
signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic) is

begin
end procedure average_samples;

248 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.34.3 procedure_003

This rule checks the indent of the end keyword.

Violation

procedure average_samples (
constant a : in integer;
signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic) is

begin
end procedure average_samples;

Fix

procedure average_samples (
constant a : in integer;
signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic) is

begin
end procedure average_samples;

15.34.4 procedure_004

This rule checks the indent of parameters.

Violation

procedure average_samples (
constant a : in integer;

signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);

signal d : out std_logic) is
begin
end procedure average_samples;

Fix

procedure average_samples (
constant a : in integer;
signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic) is

begin
end procedure average_samples;

15.34.5 procedure_005

This rule checks the indent of line between the is and begin keywords

15.34. Procedure Rules 249

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Violation

procedure average_samples (
constant a : in integer;
signal d : out std_logic) is

variable var_1 : integer;
variable var_1 : integer;

begin
end procedure average_samples;

Fix

procedure average_samples (
constant a : in integer;
signal b : in std_logic;
variable c : in std_logic_vector(3 downto 0);
signal d : out std_logic) is
variable var_1 : integer;
variable var_1 : integer;

begin
end procedure average_samples;

15.34.6 procedure_006

This rule checks the indent of the closing parenthesis if it is on it’s own line.

Violation

procedure average_samples (
constant a : in integer;
signal d : out std_logic
) is

Fix

procedure average_samples (
constant a : in integer;
signal d : out std_logic

) is

15.34.7 procedure_007

This rule checks for consistent capitalization of procedure names.

Violation

architecture rtl of entity1 is

procedure average_samples (
constant a : in integer;
signal d : out std_logic

) is
(continues on next page)

250 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

begin

proc1 : process () is
begin

Average_samples();

end process proc1;

end architecture rtl;

Fix

architecture rtl of entity1 is

procedure average_samples (
constant a : in integer;
signal d : out std_logic

) is

begin

proc1 : process () is
begin

average_samples();

end process proc1;

end architecture RTL;

15.34.8 procedure_008

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

END;

End procedure proc;

Fix

end;

end procedure proc;

15.34.9 procedure_009

15.34. Procedure Rules 251

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

This rule checks the procedure keyword in the end procedure has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end PROCEDURE;

end Procedure proc;

Fix

end procedure;

end procedure proc;

15.34.10 procedure_010

This rule checks the identifiers for all declarations are aligned in the procedure declarative part.

Refer to the section Configuring Identifier Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
signal sig1 : natural;
constant c_period : time;

Fix

variable var1 : natural;
signal sig1 : natural;
constant c_period : time;

15.35 Procedure Call Rules

These rules handle procedure_call_statement and concurrent_procedure_call_statement elements.

15.35.1 procedure_call_001

This rule checks for labels on procedure call statements. Labels on procedure calls are optional and do not provide
additional information.

Violation

WR_EN_OUTPUT : WR_EN(parameter);

Fix

WR_EN(parameter);

252 Chapter 15. Rules

configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-identifier-alignment-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.35.2 procedure_call_002

This rule checks for labels on concurrent procedure call statements. Labels on procedure calls are optional and do not
provide additional information.

Violation

WR_EN_OUTPUT : WR_EN(parameter);

Fix

WR_EN(parameter);

15.35.3 procedure_call_100

This rule checks for a single space between the following block elements: label, label colon, postponed keyword and
the procedure name.

Violation

procedure_label : postponed WR_EN(parameter);

Fix

procedure_label : postponed WR_EN(parameter);

15.35.4 procedure_call_300

This rule checks the indent of the procedure_call label.

Violation

a <= b;

procedure_label : WR_EN(parameter);

Fix

a <= b;

procedure_label : WR_EN(parameter);

15.35.5 procedure_call_301

This rule checks the indent of the postponed keyword if it exists..

Violation

15.35. Procedure Call Rules 253

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

a <= b;

postponed WR_EN(parameter);

Fix

a <= b;

postponed WR_EN(parameter);

15.35.6 procedure_call_302

This rule checks the indent of the procedure name.

Violation

a <= b;

WR_EN(parameter);

Fix

a <= b;

WR_EN(parameter);

15.35.7 procedure_call_500

This rule checks the label has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

PROCEDURE_CALL_LABEL : WR_EN(paremeter);

Fix

procedure_call_label : WR_EN(paremeter);

15.35.8 procedure_call_501

This rule checks the postponed keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

POSTPONED WR_EN(parameter)

254 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

Fix

postponed WR_EN(parameter)

15.36 Process Rules

15.36.1 process_001

This rule checks the indent of the process declaration.

Violation

architecture rtl of fifo is

begin

proc_a : process (rd_en, wr_en, data_in, data_out,

Fix

architecture rtl of fifo is

begin

proc_a : process (rd_en, wr_en, data_in, data_out,

15.36.2 process_002

This rule checks for a single space after the process keyword.

Violation

proc_a : process(rd_en, wr_en, data_in, data_out,

proc_a : process (rd_en, wr_en, data_in, data_out,

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,

proc_a : process (rd_en, wr_en, data_in, data_out,

15.36.3 process_003

This rule checks the indent of the begin keyword.

Violation

15.36. Process Rules 255

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

15.36.4 process_004

This rule checks the begin keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
BEGIN

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

15.36.5 process_005

This rule checks the process keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

proc_a : PROCESS (rd_en, wr_en, data_in, data_out,

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,

15.36.6 process_006

This rule checks the indent of the end process keywords.

256 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

end process proc_a;

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

end process proc_a;

15.36.7 process_007

This rule checks for a single space after the end keyword.

Violation

end process proc_a;

Fix

end process proc_a;

15.36.8 process_008

This rule checks the end keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

END process proc_a;

Fix

end process proc_a;

15.36.9 process_009

This rule checks the process keyword has proper case in the end process line.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

15.36. Process Rules 257

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

end PROCESS proc_a;

Fix

end process proc_a;

15.36.10 process_010

This rule checks the begin keyword is on it’s own line.

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

15.36.11 process_011

This rule checks for a blank line below the end process keyword.

Refer to Configuring Blank Lines for options.

Violation

end process proc_a;
wr_en <= wr_en;

Fix

end process proc_a;

wr_en <= wr_en;

15.36.12 process_012

This rule checks for the existence of the is keyword.

Refer to the section Configuring Optional Items for options.

Violation

258 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-optional-items

vhdl-style-guide Documentation, Release 3.2.0

proc_a : process
begin
end process;

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

)
begin
end process;

Fix

proc_a : process is
begin
end process;

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin
end process;

15.36.13 process_013

This rule checks the is keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) IS
begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

15.36.14 process_014

This rule checks for a single space before the is keyword.

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

(continues on next page)

15.36. Process Rules 259

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

) is
begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

15.36.15 process_015

This rule checks for blank lines or comments above the process declaration.

Refer to the section Configuring Blank Lines for options regarding comments.

The default style is no_code.

Violation

-- This process performs FIFO operations.
proc_a : process (rd_en, wr_en, data_in, data_out,

wr_en <= wr_en;
proc_a : process (rd_en, wr_en, data_in, data_out,

Fix

-- This process performs FIFO operations.
proc_a : process (rd_en, wr_en, data_in, data_out,

wr_en <= wr_en;

proc_a : process (rd_en, wr_en, data_in, data_out,

15.36.16 process_016

This rule checks the process has a label.

Violation

process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full
) is

begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

260 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.36.17 process_017

This rule checks the process label has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

PROC_A : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

15.36.18 process_018

This rule checks the end process line has a label. The closing label will be added if the opening process label exists.

Refer to the section Configuring Optional Items for options.

Violation

end process;

Fix

end process proc_a;

15.36.19 process_019

This rule checks the end process label has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

end process PROC_A;

Fix

end process proc_a;

15.36. Process Rules 261

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-optional-items
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

15.36.20 process_020

This rule checks the indentation of multiline sensitivity lists.

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full,

overflow, underflow
) is begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full,
overflow, underflow

) is
begin

15.36.21 process_021

This rule checks for blank lines above the begin keyword if there are no process declarative items.

Refer to Configuring Blank Lines for options.

Violation

proc_a : process

begin

proc_a : process (rd_en, wr_en)

begin

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is

begin

Fix

proc_a : process
begin

proc_a : process (rd_en, wr_en)
begin

(continues on next page)

262 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-blank-lines

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

15.36.22 process_022

This rule checks for a blank line below the begin keyword.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

rd_en <= '0';

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

rd_en <= '0';

15.36.23 process_023

This rule checks for a blank line above the end process keyword.

Refer to Configuring Blank Lines for options.

Violation

wr_en <= '1';
end process proc_a;

Fix

wr_en <= '1';

end process proc_a;

15.36.24 process_024

This rule checks for a single space after the process label.

15.36. Process Rules 263

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Violation

proc_a: process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

15.36.25 process_025

This rule checks for a single space after the colon and before the process keyword.

Violation

proc_a :process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
begin

15.36.26 process_026

This rule checks for blank lines above the first declarative line, if it exists.

Refer to Configuring Blank Lines for options.

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is
-- Keep track of the number of words in the FIFO
variable word_count : integer;

begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is

(continues on next page)

264 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-blank-lines

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

-- Keep track of the number of words in the FIFO
variable word_count : integer;

begin

15.36.27 process_027

This rule checks for blank lines above the begin keyword if a declarative item exists.

Refer to Configuring Blank Lines for options.

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is

-- Keep track of the number of words in the FIFO
variable word_count : integer;

begin

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

) is

-- Keep track of the number of words in the FIFO
variable word_count : integer;

begin

15.36.28 process_028

This rule checks the alignment of the closing parenthesis of a sensitivity list. Parenthesis on multiple lines should be
in the same column.

Violation

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full
)

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

)

15.36. Process Rules 265

phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.36.29 process_029

This rule checks for the format of clock definitions in clock processes. The rule can be set to enforce event definition:

if (clk'event and clk = '1') then

..or edge definition:

if (rising_edge(clk)) then

event configuration

Note: This is the default configuration.

Violation

if (rising_edge(clk)) then

if (falling_edge(clk)) then

Fix

if (clk'event and clk = '1') then

if (clk'event and clk = '0') then

edge configuration

Note: Configuration this by setting the ‘clock’ attribute to ‘edge’

{
"rule":{
"process_029":{

"clock":"edge"
}

}
}

Violation

if (clk'event and clk = '1') then

if (clk'event and clk = '0') then

Fix

if (rising_edge(clk)) then

if (falling_edge(clk)) then

266 Chapter 15. Rules

phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.36.30 process_030

This rule checks for a single signal per line in a sensitivity list that is not the last one. The sensitivity list is required
by the compiler, but provides no useful information to the reader. Therefore, the vertical spacing of the sensitivity list
should be minimized. This will help with code readability.

Note: This rule is left to the user to fix.

Violation

proc_a : process (rd_en,
wr_en,
data_in,
data_out,
rd_full,
wr_full

)

Fix

proc_a : process (rd_en, wr_en, data_in, data_out,
rd_full, wr_full

)

15.36.31 process_031

This rule checks for alignment of identifiers in the process declarative region.

Violation

proc_1 : process(all) is

variable var1 : boolean;
constant cons1 : integer;
file file1 : load_file_file open read_mode is load_file_name;

begin

end process proc_1;

Fix

proc_1 : process(all) is

variable var1 : boolean;
constant cons1 : integer;
file file1 : load_file_file open read_mode is load_file_name;

begin

end process proc_1;

15.36. Process Rules 267

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.36.32 process_032

This rule checks the process label is on the same line as the process keyword.

Violation

proc_1 :

process(all) is

Fix

proc_1 : process(all) is

15.36.33 process_033

This rule checks the colons are in the same column for all declarations in the process declarative part. Refer to the
section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

variable var1 : natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

Fix

variable var1 : natural;
variable var2 : natural;
constant c_period : time;
file my_test_input : my_file_type;

15.36.34 process_034

This rule aligns inline comments between the end of the process sensitivity list and the process begin keyword. Refer
to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

proc_1 : process () is

variable counter : integer range 0 to 31; -- Counts the number of frames
→˓received

variable width : natural range 0 to 255; -- Keeps track of the data word size

variable size : natural range 0 to 7; -- Keeps track of the frame size

begin

Fix

268 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

proc_1 : process () is

variable counter : integer range 0 to 31; -- Counts the number of frames received
variable width : natural range 0 to 255; -- Keeps track of the data word size

variable size : natural range 0 to 7; -- Keeps track of the frame size

begin

15.36.35 process_035

This rule checks the alignment of inline comments between the process begin and end process lines. Refer to the
section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

proc_1: process () is
begin

a <= '1'; -- Assert
b <= '0'; -- Deassert
c <= '1'; -- Enable

end process proc_1;

Fix

proc_1: process () is
begin

a <= '1'; -- Assert
b <= '0'; -- Deassert
c <= '1'; -- Enable

end process proc_1;

15.36.36 process_036

This rule checks for valid prefixes on process labels. The default prefix is proc_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

main: process () is

Fix

proc_main: process () is

15.36. Process Rules 269

phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules

vhdl-style-guide Documentation, Release 3.2.0

15.36.37 process_600

This rule checks for valid suffixes on process labels. The default suffix is _proc.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

main: process () is

Fix

main_proc: process () is

15.37 Report Statement Rules

15.37.1 report_statement_001

This rule removes labels on report_statement_statements.

Violation

REPORT_LABEL : report "FIFO width is limited to 16 bits.";

Fix

REPORT_LABEL : report "FIFO width is limited to 16 bits.";

15.37.2 report_statement_002

This rule checks the severity keyword is on it’s own line.

Violation

report "FIFO width is limited to 16 bits." severity FAILURE;

Fix

report "FIFO width is limited to 16 bits."
severity FAILURE;

15.37.3 report_statement_100

This rule checks for a single space after the report keyword.

Violation

270 Chapter 15. Rules

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

report "FIFO width is limited to 16 bits.";

Fix

report "FIFO width is limited to 16 bits.";

15.37.4 report_statement_101

This rule checks for a single space after the severity keyword.

Violation

report FIFO width is limited to 16 bits."
severity FAILURE;

Fix

report "FIFO width is limited to 16 bits."
severity FAILURE;

15.37.5 report_statement_300

This rule checks indent of multiline report statements.

Violation

report FIFO width is limited to 16 bits."
severity FAILURE;

Fix

report "FIFO width is limited to 16 bits."
severity FAILURE;

15.37.6 report_statement_400

This rule checks the alignment of the report expressions.

Note: There is a configuration option alignment which changes the indent location of multiple lines.

alignment set to ‘report’ (Default)

Violation

15.37. Report Statement Rules 271

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

report "FIFO width is limited" &
" to 16 bits."

severity FAILURE;

Fix

report "FIFO width is limited" &
" to 16 bits."

severity FAILURE;

alignment set to ‘left’

Violation

report "FIFO width is limited" &
" to 16 bits."

severity FAILURE;

Fix

report "FIFO width is limited" &
" to 16 bits."

severity FAILURE;

15.37.7 report_statement_500

This rule checks the report keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

REPORT "FIFO width is limited to 16 bits."
severity FAILURE;

report "FIFO width is limited to 16 bits."
severity FAILURE;

15.37.8 report_statement_501

This rule checks the severity keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

report "FIFO width is limited to 16 bits."
SEVERITY FAILURE;

272 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

report "FIFO width is limited to 16 bits."
severity FAILURE;

15.38 Range Rules

These rules cover the range definitions in signals, constants, ports and other cases where ranges are defined.

15.38.1 range_001

This rule checks the case of the downto keyword.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

signal sig1 : std_logic_vector(3 DOWNTO 0);
signal sig2 : std_logic_vector(16 downTO 1);

Fix

signal sig1 : std_logic_vector(3 downto 0);
signal sig2 : std_logic_vector(16 downTO 1);

15.38.2 range_002

This rule checks the case of the to keyword.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

signal sig1 : std_logic_vector(3 TO 0);
signal sig2 : std_logic_vector(16 tO 1);

Fix

signal sig1 : std_logic_vector(3 to 0);
signal sig2 : std_logic_vector(16 to 1);

15.39 Sequential Rules

15.39.1 sequential_001

This rule checks the indent of sequential statements.

Violation

15.38. Range Rules 273

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

begin

wr_en <= '1';
rd_en <= '0';

Fix

begin

wr_en <= '1';
rd_en <= '0';

15.39.2 sequential_002

This rule checks for a single space after the <= operator.

Violation

wr_en <= '1';
rd_en <='0';

Fix

wr_en <= '1';
rd_en <= '0';

15.39.3 sequential_003

This rule checks for at least a single space before the <= operator.

Violation

wr_en<= '1';
rd_en <= '0';

Fix

wr_en <= '1';
rd_en <= '0';

15.39.4 sequential_004

This rule checks the alignment of multiline sequential statements.

Violation

overflow <= wr_en and
rd_en;

274 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Fix

overflow <= wr_en and
rd_en;

15.39.5 sequential_005

This rule checks the alignment of the <= operators over consecutive sequential lines.

Following extra configurations are supported:

• if_control_statements_end_group,

• case_control_statements_end_group.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

wr_en <= '1';
rd_en <= '0';

Fix

wr_en <= '1';
rd_en <= '0';

15.39.6 sequential_006

This rule checks for comments within multiline sequential statements.

Violation

overflow <= wr_en and
-- rd_address(0)

rd_en;

Fix

overflow <= wr_en and
rd_en;

15.39.7 sequential_007

This rule checks for code after a sequential assignment.

Violation

a <= '0'; b <= '1'; c <= '0'; -- comment

Fix

15.39. Sequential Rules 275

phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

a <= '0';
b <= '1';
c <= '0'; -- comment

15.40 Signal Rules

15.40.1 signal_001

This rule checks the indent of signal declarations.

Violation

architecture rtl of fifo is

signal wr_en : std_logic;
signal rd_en : std_logic;

begin

Fix

architecture rtl of fifo is

signal wr_en : std_logic;
signal rd_en : std_logic;

begin

15.40.2 signal_002

This rule checks the signal keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

SIGNAL wr_en : std_logic;

Fix

signal wr_en : std_logic;

15.40.3 signal_003

This rule was depricated and replaced with rules:

• function_015

• package_019

276 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
function_rules.html#function-015
package_rules.html#package-019

vhdl-style-guide Documentation, Release 3.2.0

• procedure_010

• architecture_029

15.40.4 signal_004

This rule checks the signal name has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

signal WR_EN : std_logic;

Fix

signal wr_en : std_logic;

15.40.5 signal_005

This rule checks for a single space after the colon.

Violation

signal wr_en : std_logic;
signal rd_en :std_logic;

Fix

signal wr_en : std_logic;
signal rd_en : std_logic;

15.40.6 signal_006

This rule checks for at least a single space before the colon.

Violation

signal wr_en: std_logic;
signal rd_en : std_logic;

Fix

signal wr_en : std_logic;
signal rd_en : std_logic;

15.40. Signal Rules 277

procedure_rules.html#procedure-010
architecture_rules.html#architecture-029
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.40.7 signal_007

This rule checks for default assignments in signal declarations.

Note: This rule is requires the user to remove the default assignments.

Violation

signal wr_en : std_logic := '0';

Fix

signal wr_en : std_logic;

15.40.8 signal_008

This rule checks for valid prefixes on signal identifiers. Default signal prefix is s_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

signal wr_en : std_logic;
signal rd_en : std_logic;

Fix

signal s_wr_en : std_logic;
signal s_rd_en : std_logic;

15.40.9 signal_010

This rule checks the signal type has proper case if it is a VHDL keyword.

Note: This rule is disabled by default.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

signal wr_en : STD_LOGIC;
signal rd_en : Std_logic;
signal cs_f : t_User_Defined_Type;

Fix

278 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

signal wr_en : std_logic;
signal rd_en : std_logic;
signal cs_f : t_User_Defined_Type;

15.40.10 signal_011

This rule checks the signal type has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

signal wr_en : STD_LOGIC;
signal rd_en : Std_logic;
signal cs_f : t_User_Defined_Type;

Fix

signal wr_en : std_logic;
signal rd_en : std_logic;
signal cs_f : t_user_defined_type;

15.40.11 signal_012

This rule checks multiple signal declarations on a single line are column aligned.

Note: This rule will only cover two signals on a single line.

Violation

signal wr_en, wr_en_f : std_logic;
signal rd_en_f, rd_en : std_logic;
signal chip_select, chip_select_f : t_user_defined_type;

Fix

signal wr_en, wr_en_f : std_logic;
signal rd_en_f, rd_en : std_logic;
signal chip_select, chip_select_f : t_user_defined_type;

15.40.12 signal_014

This rule checks for consistent capitalization of signal names.

Violation

15.40. Signal Rules 279

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

architecture rtl of entity1 is

signal sig1 : std_logic;
signal sig2 : std_logic;

begin

proc_name : process (siG2) is
begin

siG1 <= '0';

if (SIG2 = '0') then
sIg1 <= '1';

elisif (SiG2 = '1') then
SIg1 <= '0';

end if;

end process proc_name;

end architecture rtl;

Fix

architecture rtl of entity1 is

signal sig1 : std_logic;
signal sig2 : std_logic;

proc_name : process (sig2) is
begin

sig1 <= '0';

if (sig2 = '0') then
sig1 <= '1';

elisif (sig2 = '1') then
sig1 <= '0';

end if;

end process proc_name;

end architecture rtl;

15.40.13 signal_015

This rule checks for multiple signal names defined in a single signal declaration. By default, this rule will only flag
more than two signal declarations.

Refer to the section Configuring Number of Signals in Signal Declaration for information on changing the default.

Violation

signal sig1, sig2
sig3, sig4,

(continues on next page)

280 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-number-of-signals-in-signal-declaration

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

sig5
: std_logic;

Fix

signal sig1 : std_logic;
signal sig2 : std_logic;
signal sig3 : std_logic;
signal sig4 : std_logic;
signal sig5 : std_logic;

15.40.14 signal_016

This rule checks the signal declaration is on a single line.

Violation

signal sig1
: std_logic;

signal sig2 :
std_logic;

Fix

signal sig1 : std_logic;

signal sig2 : std_logic;

15.40.15 signal_600

This rule checks for valid suffixes on signal identifiers. Default signal suffix is _s.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

signal wr_en : std_logic;
signal rd_en : std_logic;

Fix

signal wr_en_s : std_logic;
signal rd_en_s : std_logic;

15.40. Signal Rules 281

phases.html
rule_severity.html
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules

vhdl-style-guide Documentation, Release 3.2.0

15.41 Source File Rules

15.41.1 source_file_001

This rule checks for the existance of the source file passed to VSG.

Violation

Source file passed to VSG does not exist. This violation will be reported at the command line in the normal output. It
will also be reported in the junit file if the –junit option is used.

Fix

Pass correct file name to VSG.

15.42 Subtype Rules

15.42.1 subtype_001

This rule checks for indentation of the subtype keyword. Proper indentation enhances comprehension.

The indent amount can be controlled by the indentSize attribute on the rule. indentSize defaults to 2.

Violation

architecture rtl of fifo is

subtype read_size is range 0 to 9;
subtype write_size is range 0 to 9;

begin

Fix

architecture rtl of fifo is

subtype read_size is range 0 to 9;
subtype write_size is range 0 to 9;

begin

15.42.2 subtype_002

This rule checks for consistent capitalization of subtype names.

Violation

282 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

subtype read_size is range 0 to 9;
subtype write_size is range 0 to 9;

signal read : READ_SIZE;
signal write : write_size;

constant read_sz : read_size := 8;
constant write_sz : WRITE_size := 1;

Fix

subtype read_size is range 0 to 9;
subtype write_size is range 0 to 9;

signal read : read_size;
signal write : write_size;

constant read_sz : read_size := 8;
constant write_sz : write_size := 1;

15.42.3 subtype_003

This rule was depricated and replaced with rules:

• function_015

• package_019

• procedure_010

• architecture_029

15.42.4 subtype_004

This rule checks for valid prefixes in subtype identifiers. The default new subtype prefix is st_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

subtype my_subtype is range 0 to 9;

Fix

subtype st_my_subtype is range 0 to 9;

15.42.5 subtype_600

This rule checks for valid suffixes in subtype identifiers. The default new subtype suffix is _st.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

15.42. Subtype Rules 283

function_rules.html#function-015
package_rules.html#package-019
procedure_rules.html#procedure-010
architecture_rules.html#architecture-029
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules

vhdl-style-guide Documentation, Release 3.2.0

subtype my_subtype is range 0 to 9;

Fix

subtype my_subtype_st is range 0 to 9;

15.43 Type Rules

15.43.1 type_001

This rule checks the indent of the type declaration.

Violation

architecture rtl of fifo is

type state_machine is (idle, write, read, done);

begin

Fix

architecture rtl of fifo is

type state_machine is (idle, write, read, done);

begin

15.43.2 type_002

This rule checks the type keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

TYPE state_machine is (idle, write, read, done);

Fix

type state_machine is (idle, write, read, done);

15.43.3 type_003

This rule was depricated and replaced with rules:

• function_015

• package_019

284 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
function_rules.html#function-015
package_rules.html#package-019

vhdl-style-guide Documentation, Release 3.2.0

• procedure_010

• architecture_029

15.43.4 type_004

This rule checks the type identifier has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

type STATE_MACHINE is (idle, write, read, done);

Fix

type state_machine is (idle, write, read, done);

15.43.5 type_005

This rule checks the indent of multiline enumerated types.

Violation

type state_machine is (
idle,

write,
read,

done);

Fix

type state_machine is (
idle,
write,
read,
done);

15.43.6 type_006

This rule checks for a single space before the is keyword.

Violation

type state_machine is (idle, write, read, done);

Fix

type state_machine is (idle, write, read, done);

15.43. Type Rules 285

procedure_rules.html#procedure-010
architecture_rules.html#architecture-029
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.43.7 type_007

This rule checks for a single space after the is keyword.

Violation

type state_machine is (idle, write, read, done);

Fix

type state_machine is (idle, write, read, done);

15.43.8 type_008

This rule checks the closing parenthesis of multiline enumerated types is on it’s own line.

Violation

type state_machine is (
idle,
write,
read,
done);

Fix

type state_machine is (
idle,
write,
read,
done

);

15.43.9 type_009

This rule checks for an enumerate type after the open parenthesis on multiline enumerated types.

Violation

type state_machine is (idle,
write,
read,
done

);

Fix

type state_machine is (
idle,
write,

(continues on next page)

286 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

read,
done

);

15.43.10 type_010

This rule checks for blank lines or comments above the type declaration.

Refer to Configuring Previous Line Rules for options.

Violation

signal wr_en : std_logic;
type state_machine is (idle, write, read, done);

Fix

signal wr_en : std_logic;

type state_machine is (idle, write, read, done);

15.43.11 type_011

This rule checks for a blank line below the type declaration.

Refer to the section Configuring Blank Lines for options regarding comments.

Violation

type state_machine is (idle, write, read, done);
signal sm : state_machine;

Fix

type state_machine is (idle, write, read, done);

signal sm : state_machine;

15.43.12 type_012

This rule checks the indent of record elements in record type declarations.

Violation

type interface is record
data : std_logic_vector(31 downto 0);

chip_select : std_logic;
wr_en : std_logic;

end record;

15.43. Type Rules 287

phases.html
rule_severity.html
configuring.html#configuring-previous-line-rules
phases.html
rule_severity.html
configuring.html#configuring-blank-lines
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

Fix

type interface is record
data : std_logic_vector(31 downto 0);
chip_select : std_logic;
wr_en : std_logic;

end record;

15.43.13 type_013

This rule checks the is keyword in type definitions has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

type interface IS record
type interface Is record
type interface is record

Fix

type interface is record
type interface is record
type interface is record

15.43.14 type_014

This rule checks for consistent capitalization of type names.

Violation

type state_machine is (idle, write, read, done);

signal sm : State_Machine;

Fix

type state_machine is (idle, write, read, done);

signal sm : state_machine;

15.43.15 type_015

This rule checks for valid prefixes in user defined type identifiers. The default new type prefix is t_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

288 Chapter 15. Rules

phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules

vhdl-style-guide Documentation, Release 3.2.0

type my_type is range -5 to 5 ;

Fix

type t_my_type is range -5 to 5 ;

15.43.16 type_016

This rule checks the indent of the closing parenthesis on multiline types.

Violation

architecture rtl of fifo is

type state_machine is (
idle, write, read, done
);

begin

Fix

architecture rtl of fifo is

type state_machine is (
idle, write, read, done

);

begin

15.43.17 type_400

This rule checks the colons are in the same column for all elements in the block declarative part.

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

type t_some_record is record
element_1 : natural;
some_other_element : natural;
yet_another_element : natural;

end record;

Fix

type t_some_record is record
element_1 : natural;
some_other_element : natural;
yet_another_element : natural;

end record;

15.43. Type Rules 289

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

15.43.18 type_600

This rule checks for valid suffixes in user defined type identifiers. The default new type suffix is _t.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

type my_type is range -5 to 5 ;

Fix

type my_type_t is range -5 to 5 ;

15.44 Variable Rules

15.44.1 variable_001

This rule checks the indent of variable declarations.

Violation

proc : process () is

variable count : integer;
variable counter : integer;

begin

Fix

proc : process () is

variable count : integer;
variable counter : integer;

begin

15.44.2 variable_002

This rule checks the variable keyword has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

VARIABLE count : integer;

Fix

290 Chapter 15. Rules

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules

vhdl-style-guide Documentation, Release 3.2.0

variable count : integer;

15.44.3 variable_003

This rule was depricated and replaced with rules:

• function_015

• package_019

• procedure_010

• architecture_029

15.44.4 variable_004

This rule checks the variable name has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

variable COUNT : integer;

Fix

variable count : integer;

15.44.5 variable_005

This rule checks there is a single space after the colon.

Violation

variable count :integer;
variable counter : integer;

Fix

variable count : integer;
variable counter : integer;

15.44.6 variable_006

This rule checks for at least a single space before the colon.

Violation

15.44. Variable Rules 291

function_rules.html#function-015
package_rules.html#package-019
procedure_rules.html#procedure-010
architecture_rules.html#architecture-029
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

variable count: integer;
variable counter : integer;

Fix

variable count : integer;
variable counter : integer;

15.44.7 variable_007

This rule checks for default assignments in variable declarations.

Violation

variable count : integer := 32;

Fix

variable count : integer;

15.44.8 variable_010

This rule checks the variable type has proper case.

Refer to the section Configuring Uppercase and Lowercase Rules for information on changing the default case.

Violation

variable count : INTEGER;

Fix

variable count : integer;

15.44.9 variable_011

This rule checks for consistent capitalization of variable names.

Violation

architecture rtl of entity1 is

shared variable var1 : std_logic;
shared variable var2 : std_logic;

begin

proc_name : process () is

(continues on next page)

292 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-uppercase-and-lowercase-rules
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

variable var3 : std_logic;
variable var4 : std_logic;

begin

Var1 <= '0';

if (VAR2 = '0') then
vaR3 <= '1';

elisif (var2 = '1') then
VAR4 <= '0';

end if;

end process proc_name;

end architecture rtl;

Fix

proc_name : process () is

variable var1 : std_logic;
variable var2 : std_logic;
variable var3 : std_logic;
variable var4 : std_logic;

begin

var1 <= '0';

if (var2 = '0') then
var3 <= '1';

elisif (var2 = '1') then
var4 <= '0';

end if;

end process proc_name;

15.44.10 variable_012

This rule checks for valid prefixes on variable identifiers. The default variable prefix is v_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed prefixes.

Violation

variable my_var : natural;

Fix

variable v_my_var : natural;

15.44. Variable Rules 293

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules

vhdl-style-guide Documentation, Release 3.2.0

15.44.11 variable_600

This rule checks for valid suffix on variable identifiers. The default variable suffix is v_.

Refer to the section Configuring Prefix and Suffix Rules for information on changing the allowed suffixes.

Violation

variable my_var : natural;

Fix

variable my_var_v : natural;

15.45 Variable Assignment Rules

15.45.1 variable_assignment_001

This rule checks the indent of a variable assignment.

Violation

proc : process () is
begin

counter := 0;
count := counter + 1;

Fix

proc : process () is
begin

counter := 0;
count := counter + 1;

15.45.2 variable_assignment_002

This rule checks for a single space after the assignment.

Violation

counter :=0;
count := counter + 1;

Fix

counter := 0;
count := counter + 1;

294 Chapter 15. Rules

phases.html
configuring.html#configuring-disabled-rules
rule_severity.html
configuring.html#configuring-prefix-and-suffix-rules
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.45.3 variable_assignment_003

This rule checks for at least a single space before the assignment.

Violation

counter:= 0;
count := counter + 1;

Fix

counter := 0;
count := counter + 1;

15.45.4 variable_assignment_004

This rule checks the alignment of multiline variable assignments.

Violation

counter := 1 + 4 + 10 + 25 +
30 + 35;

Fix

counter := 1 + 4 + 10 + 25 +
30 + 35;

15.45.5 variable_assignment_005

This rule checks the alignment of := operators over multiple lines.

Following extra configurations are supported:

• if_control_statements_end_group.

• case_control_statements_end_group,

Refer to the section Configuring Keyword Alignment Rules for information on changing the configurations.

Violation

counter := 0;
count := counter + 1;

Fix

counter := 0;
count := counter + 1;

15.45. Variable Assignment Rules 295

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html
configuring.html#configuring-keyword-alignment-rules

vhdl-style-guide Documentation, Release 3.2.0

15.45.6 variable_assignment_006

This rule checks for comments in multiline variable assignments.

Violation

counter := 1 + 4 + 10 + 25 +
-- Add in more stuff
30 + 35;

Fix

counter := 1 + 4 + 10 + 25 +
30 + 35;

15.46 Wait Rules

15.46.1 wait_001

This rule checks for indentation of the wait keyword. Proper indentation enhances comprehension.

Violation

begin

wait for 10ns;
wait on a,b;

wait until a = '0';

Fix

begin

wait for 10ns;
wait on a,b;
wait until a = '0';

15.47 When Rules

These rules cover the usage of when keywords in sequential and concurrent statements.

15.47.1 when_001

This rule checks the else keyword is not at the beginning of a line. The else should be at the end of the preceeding line.

Violation

296 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

wr_en <= '1' when a = '1' -- This is comment
else '0' when b = '0'
else c when d = '1'
else f;

Fix

wr_en <= '1' when a = '1' else -- This is a comment
'0' when b = '0' else
c when d = '1' else
f;

15.48 While Loop Rules

15.48.1 while_loop_001

This rule checks for indentation of the while keyword. Proper indentation enhances comprehension.

Violation

begin

while (temp /= 0) loop
temp := temp/2;

end loop;

Fix

begin

while (temp /= 0) loop
temp := temp/2;

end loop;

15.48.2 while_loop_002

This rule checks for indentation of the end loop keywords. The end loop must line up with the while keyword. Proper
indentation enhances comprehension.

Violation

begin

while (temp /= 0) loop
temp := temp/2;

end loop;

Fix

15.48. While Loop Rules 297

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

begin

while (temp /= 0) loop
temp := temp/2;

end loop;

15.49 Whitespace Rules

15.49.1 whitespace_001

This rule has been depricated.

VSG strips trailing spaces when a file is read in.

15.49.2 whitespace_002

This rule has been depricated.

VSG changes tabs to spaces when a file is read in.

15.49.3 whitespace_003

This rule checks for spaces before semicolons.

Violation

wr_en : in std_logic ;

Fix

wr_en : in std_logic;

15.49.4 whitespace_004

This rule checks for spaces before commas.

Violation

wr_en => wr_en ,
rd_en => rd_en,

Fix

wr_en => wr_en,
rd_en => rd_en,

298 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.49.5 whitespace_005

This rule checks for spaces after an open parenthesis.

Note: Spaces before numbers are allowed.

Violation

signal data : std_logic_vector(31 downto 0);
signal byte_enable : std_logic_vector(3 downto 0);
signal width : std_logic_vector(g_width - 1 downto 0);

Fix

signal data : std_logic_vector(31 downto 0);
signal byte_enable : std_logic_vector(3 downto 0);
signal width : std_logic_vector(g_width - 1 downto 0);

15.49.6 whitespace_006

This rule checks for spaces before a close parenthesis.

Violation

signal data : std_logic_vector(31 downto 0);
signal byte_enable : std_logic_vector(3 downto 0);
signal width : std_logic_vector(g_width - 1 downto 0);

Fix

signal data : std_logic_vector(31 downto 0);
signal byte_enable : std_logic_vector(3 downto 0);
signal width : std_logic_vector(g_width - 1 downto 0);

15.49.7 whitespace_007

This rule checks for spaces after a comma.

Violation

proc : process (wr_en,rd_en,overflow) is

Fix

proc : process (wr_en, rd_en, overflow) is

15.49. Whitespace Rules 299

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.49.8 whitespace_008

This rule checks for spaces after the std_logic_vector keyword.

Violation

signal data : std_logic_vector (7 downto 0);
signal counter : std_logic_vector (7 downto 0);

Fix

signal data : std_logic_vector(7 downto 0);
signal counter : std_logic_vector(7 downto 0);

15.49.9 whitespace_010

This rule checks for spaces before and after the concate (&) operator.

Violation

a <= b&c;

Fix

a <= b & c;

15.49.10 whitespace_011

This rule checks for at least a single space before and after math operators +, -, /, * and **.

Violation

a <= b+c;
a <= b-c;
a <= b/c;
a <= b*c;
a <= b**c;
a <= (b+c)-(d-e);

Fix

a <= b + c;
a <= b - c;
a <= b / c;
a <= b * c;
a <= b ** c;
a <= (b + c) - (d - e);

300 Chapter 15. Rules

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

15.49.11 whitespace_012

This rule enforces a maximum number of consecutive blank lines.

Violation

a <= b;

c <= d;

Fix

a <= b;

c <= d;

Note: The default is set to 1. This can be changed by setting the numBlankLines attribute to another number.

{
"rule":{

"whitespace_012":{
"numBlankLines":3

}
}

}

15.49.12 whitespace_013

This rule checks for at least a single space before and after logical operators.

Violation

if (a = '1')and(b = '0')
if (a = '0')or (b = '1')

Fix

if (a = '1') and (b = '0')
if (a = '0') or (b = '1')

15.50 With Rules

15.50.1 with_001

This rule checks for with statements.

Violation

15.50. With Rules 301

phases.html
rule_severity.html
phases.html
rule_severity.html
phases.html
rule_severity.html

vhdl-style-guide Documentation, Release 3.2.0

with buttons select

Fix

Refactor with statement into a process.

302 Chapter 15. Rules

CHAPTER 16

Contributing

I welcome any contributions to this project. No matter how small or large.

There are several ways to contribute:

1. Bug reports

2. Code base improvements

3. Feature requests

4. Pull requests

16.1 Bug Reports

I used code from open cores to develop VSG. It provided many different coding styles to process. There are bound
to be some corner cases or incorrect assumptions in the code. If you run into anything that is not handled correctly,
please submit an issue. When creating the issue, use the bug label to highlight it. Fixing bugs is prioritized over
feature enhancements.

16.2 Code Base Improvements

VSG started out to solve a problem and learn how to code in Python. The learning part is still on going, and I am
sure the code base could be improved. I run the code through Codacy and Code Climate, and they are very helpful.
However, I would appreciate any suggestions to improve the code base.

Create an issue and use the refactor label for any code which could be improved.

303

vhdl-style-guide Documentation, Release 3.2.0

16.3 Feature Requests

Let me know if there is anything I could add to VSG easier to use. The following features were not in my original
concept of VSG.

• fix

• fix_phase

• output_format

• backup

Fix is probably the most important feature of VSG. I added it when someone said it would be nice if VSG just fixed
the problems it found. There may be other important features, I just have not thought of them yet.

If you have an idea for a new feature, create an issue with the enhancement label.

16.4 Pull Requests

Pull requests are always welcome. I am trying to follow a Test Driven Development (TDD) process. Currently there
are over 1000 tests. If you do add a new feature or fix a bug, I would appreciate a new or updated test to go along with
the change.

I use Travis CI to run all the tests. I also use Codacy and Code Climate to check for code style issues. I use Codcov to
check the code coverage of the tests.

Travis CI will run these tools when a pull request is made. The results will be available on the pull request Github
page.

16.5 Running Tests

Before submitting a pull request, you can run the existing tests locally. These are the same tests Travis CI will run.

To run the tests issue the following command when using python 2.7:

python -m unittest discover

To run the tests using python 3 use the following command:

python -m unittest

After issuing the command the tests will be executed.

vhdl-style-guide$ python -m unittest discover
...
...
...
...
...
...
...
...
...
...

(continues on next page)

304 Chapter 16. Contributing

vhdl-style-guide Documentation, Release 3.2.0

(continued from previous page)

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Ran 1170 tests in 6.424s

OK

16.5. Running Tests 305

vhdl-style-guide Documentation, Release 3.2.0

306 Chapter 16. Contributing

CHAPTER 17

Release Notes

Release notes are maintained with the project on github.

https://github.com/jeremiah-c-leary/vhdl-style-guide/releases

307

https://github.com/jeremiah-c-leary/vhdl-style-guide/releases

	Overview
	Why VSG?
	Key Benefits
	Key Features
	Known Limitations

	Gallery
	Entities
	Architectures
	Component Declarations
	Component Instantiations
	Concurrent Assignments

	Installation
	PIP
	Git Hub

	Usage
	Formatting Terminal Output
	VSG
	Synastic
	Summary

	Styles
	Style Descriptions
	Adjusting built in styles

	Configuring
	file_list
	local_rules
	rule
	Reporting Single Rule Configuration
	Reporting Configuration for All Rules
	Rule Configuration Priorities
	Example: Disabling a rule
	Example: Setting the indent increment size for a single rule
	Example: Setting the indent increment size for all rules
	Multiple configurations
	Configuring Disabled Rules
	Configuring Uppercase and Lowercase Rules
	Configuring Prefix and Suffix Rules
	Configuring Number of Signals in Signal Declaration
	Configuring Length Rules
	Configuring Keyword Alignment Rules
	Configuring Identifier Alignment Rules
	Configuring Blank Lines
	Configuring Previous Line Rules
	Configuring Type of Instantiations
	Configuring Optional Items
	Configuring Block Comments
	Configuring Indentation
	Configuring Multiline Indent Rules
	Configuring Multiline Structure Rules
	Configuring Concurrent Alignment Rules
	Configuring Concurrent Structure Rules

	Code Tags
	Full rule exclusion
	Individual Rule Exclusions
	Next Line Rule Exclusions

	Editor Integration
	VIM

	Tool Integration
	–all-phases
	–json
	–fix_only

	Pragmas
	Localizing
	Example: Create rule to check for entity and architectures in the same file.
	Understanding the Rule class
	Violation dictionary
	Rule creation guidelines

	Phases
	Phase - Structural
	Phase - Whitespace
	Phase - Vertical Spacing
	Phase - Indentation
	Phase - Alignment
	Phase - Capitalization
	Phase - Naming conventions
	Subphases

	Rule Severity
	Configuring Severity Levels
	Defining Severity Levels

	Rules
	After Rules
	Architecture Rules
	Assert Rules
	Attribute Rules
	Attribute Declaration Rules
	Attribute Specification Rules
	Block Rules
	Block Comment Rules
	Case Rules
	Comment Rules
	Component Rules
	Concurrent Rules
	Constant Rules
	Context Rules
	Context Reference Rules
	Entity Rules
	Entity Specification Rules
	Exit Rules
	File Rules
	For Loop Rules
	Function Rules
	Generate Rules
	Generic Rules
	Generic Map Rules
	If Rules
	Instantiation Rules
	Length Rules
	Library Rules
	Loop Statement Rules
	Package Rules
	Package Body Rules
	Port Rules
	Port Map Rules
	Procedure Rules
	Procedure Call Rules
	Process Rules
	Report Statement Rules
	Range Rules
	Sequential Rules
	Signal Rules
	Source File Rules
	Subtype Rules
	Type Rules
	Variable Rules
	Variable Assignment Rules
	Wait Rules
	When Rules
	While Loop Rules
	Whitespace Rules
	With Rules

	Contributing
	Bug Reports
	Code Base Improvements
	Feature Requests
	Pull Requests
	Running Tests

	Release Notes

